
1866 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 68, NO. 2, FEBRUARY 2019

SDSense: An Agile and Flexible SDN-Based
Framework for Wireless Sensor Networks

Israat Haque , Senior Member, IEEE, Mohammad Nurujjaman, Member, IEEE,
Janelle Harms, Senior Member, IEEE, and Nael Abu-Ghazaleh , Senior Member, IEEE

Abstract—Software-defined networking (SDN) is a new ap-
proach to designing networks. SDN decouples and migrates net-
work control from the hardware, which enables innovative and
efficient network design and operation. The SDN-based design is
well adopted in data centers and enterprises. In this paper, we
state that SDN-based design is beneficial in the multihop wire-
less networks like wireless sensor network (WSN) and propose an
architecture called SDSense. We propose a novel principled ap-
proach of SDN-based WSN design, where we decompose network
functions as slow (e.g., topology control) and fast (e.g., congestion
control) changing components. Furthermore, we derive a network
utility maximization framework for better resource allocation. We
implement SDNSense, where software enabled sensors are dynam-
ically reconfigured to adapt to current network conditions and
demonstrate that SDSense can significantly improve the network
performance compared to its counterparts.

Index Terms—Reliability, resource allocation, software-defined
networking, wireless sensor networks.

I. INTRODUCTION

SOFTWARE-defined networking (SDN) [1], [2] is a new
approach to designing networks, where network control

functions are decoupled from elements like routers and switches
to make them simple packet forwarder. The SDN architecture
comprises management, control, and data planes. The man-
agement plane defines the network policies, which are trans-
lated into configuration rules to be installed in the data plane
elements by the control plane (controller). The management
and control layers communicate through a Northbound API;
whereas, Southbound (SB) API is used for the control and data
plane communication. The controller can dynamically config-
ure data plane elements using its global network view to meet

Manuscript received December 3, 2018; accepted December 3, 2018. Date
of publication December 19, 2018; date of current version February 12, 2019.
This work was supported by the National Sciences and Engineering Research
Council of Canada (NSERC). The review of this paper was coordinated by Dr.
Z. Fadlullah. (Corresponding author: Israat Haque.)

I. Haque is with the Department of Computer Science, Dalhousie University,
Halifax, NS B3H 4R2, Canada (e-mail:,israat@dal.ca).

M. Nurujjaman is with the Department of Global Network, Cloud
and Datacenter Services Tata Communications, Matawan, NJ 07747 USA
(e-mail:,mohammad.nurujjaman@tatacommunications.com).

J. Harms is with the Department of Computing Science, University of Alberta,
Edmonton, AB T6G 2E9, Canada (e-mail:,janelleh@ualberta.ca).

N. Abu-Ghazaleh is with the Department of Computer Science and Engi-
neering,University of California, Riverside, Riverside, CA 92521-0429 USA
(e-mail:,nael@cs.ucr.edu).

Digital Object Identifier 10.1109/TVT.2018.2888622

the applications’ demand as well as to avoid the potentially
sub-optimal or unstable emergent behavior of traditional dis-
tributed protocols. SDNs have been developed and commercial-
ized in the context of data centers and enterprise networks, and
are starting to get explored in other networking environments.

In this paper, we study the advantages of using the software-
defined network design in Wireless Sensor Networks (WSNs).
A WSN consists of a set of resource-constrained sensor devices
that are connected through a wireless medium. WSN contin-
ues to attract significant research and commercial interest due
to their potential to revolutionize sensing across many appli-
cation domains including environmental monitoring, surveil-
lance and tracking, health monitoring, manufacturing, and smart
homes [3], [4]. Moreover, WSNs can form the sensing compo-
nent of distributed cyber-physical and autonomous systems and
therefore have applications within this emerging domain [5].

Due to the shared nature of wireless networks, resource al-
location is difficult, and WSNs are prone to inefficiency and
unfairness as nearby sensors compete for access to the com-
plex wireless medium. SDNs can offer significant advantages
to WSNs by allowing the network to be configured to an ef-
ficient state. However, it also introduces some new challenges
due to the dynamic nature of the resources. We develop a reli-
able, adaptive and efficient software-defined WSN architecture
called SDSense in a principled way. SDSense monitors the net-
work state and dynamically configure software-enabled sensors
to meet application’s demand for on-time critical event delivery
to an observation center. For example, a healthcare monitor-
ing application for assisted living may require a health critical
event data, such as a notification of a patient falling as well as
video of their current location to reach health providers and first
responders reliably and in near real-time.

Some works attempted to design software-defined WSN net-
works. For instance, SDN-WISE [6], [7] proposed a stateful
software-defined architecture for WSN, i.e., sensors maintain
local state. The proposed architecture is evaluated for geo-
graphic routing and security. The distributed nature of WSN
demands alternative software-defined architecture, where con-
trol functions can judicially be delegated to sensors to support
the agility. SDN-WISE delegated neighbor list management task
to sensors. However, there must be a principled approach of
delegating control task to data plane elements to balance be-
tween efficiency and agility, which is missing in SDN-WISE.
Also, SDN-WISE does not guarantee reliable critical data for-
warding in the presence of link failure. SDIoT [8] implemented

0018-9545 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-4450-3358
https://orcid.org/0000-0002-9485-5370
mailto:israat@dal.ca
mailto:mohammad.nurujjaman@tatacommunications.com
mailto:janelleh@ualberta.ca
mailto:nael@cs.ucr.edu

HAQUE et al.: SDSENSE: AN AGILE AND FLEXIBLE SDN-BASED FRAMEWORK FOR WIRELESS SENSOR NETWORKS 1867

interference mitigation without considering a complete archi-
tecture to support reliability, agility, and efficiency. SDSense
bridges these gaps and proposes a principled approach of dele-
gating control tasks to data plane elements. It furthermore guar-
antees reliable on time-critical data delivery by constructing
Gabriel [9] based edge-disjoint routing topology.

In SDSense, we separate the management of static or slow
changing phenomena in the network from those more dynamic
phenomena that can change rapidly. For example, in a static
WSN, topology may not change significantly over large time
scales, whereas congestion at the sensors may change over small
timescales. Static or slow changing phenomena should be man-
aged directly using SDN principles while developing a more
agile approach to lead dynamic phenomena.

The protocol stack of SDSense consists of interference man-
agement, reliable topology control, routing, and congestion
management. We reduce contention but preserve reliability by
deriving a new reliable routing topology that provides alternative
paths to deliver event information when a primary route fails.
To effectively use the bandwidth, we complement the topology
with the derivation of a Time Division Multiple Access (TDMA)
transmission schedules that separate interfering transmissions
in time. Both of these components of the design are slowly
changing and managed by the logically centralized controller
with a global network view. The congestion can arise due to
the unpredictable nature of event data, which is a fast-changing
phenomenon. Thus, SDSense explores distributed congestion
management approaches implemented directly by the sensors
and using locally observed congestion to select forwarding di-
rection.

Finally, we consider that even fast moving phenomena may
have an underlying structure that changes more slowly. Em-
ploying just a distributed solution may result in increasingly
inefficient or unstable configurations. Thus, we also implement
a centralized Network Utility Maximization (NUM) algorithm
to optimize the bandwidth allocation if the congestion problems
persist, providing a balance between centralized nearly optimal
solutions and the need for rapid reaction to transient phenomena.
The resulting model is agile, in that the distributed component
can react quickly to transient phenomena, but also efficient in
that persistent problems lead to a centralized reassignment of
resources.

In SDSense architecture, the logically centralized controller
is homed at the sink but can generally be implemented any-
where in the network, and even across multiple sensors for
redundancy and load balancing. The software-enabled sensors
are configured using the control instructions from the controller.
The controller collects information from the network to build
and maintain a global network view, allowing it to carry out
effective resource allocation. The topology control, scheduling,
and routing modules reside on the controller. Thus, adding or re-
moving a module can be controlled through the northbound API
from the users’ applications. Each sensor has a local controller
to communicate with the centralized one, but also to manage any
distributed functionality delegated to the sensor. We implement
SDSense and compare its performance with non-SDN based de-
sign to demonstrate that SDSense can significantly improve the

TABLE I
LIST OF ACRONYMS USED IN THIS WORK

performance in terms of successfully delivering critical event
data in the presence of interference, link failures, and unpre-
dictable congestion.

Contribution: We introduce a principled approach of design-
ing a software-defined WSN and propose an agile architecture
called, SDSense, to offer reliable and efficient on time critical
event data delivery. The reliability is achieved through the con-
struction of an edge-disjoint topology. The efficiency and agility
are realized by delegating control tasks among local and global
controllers in a principled approach. SDSense controller mon-
itors network states to dynamically allocates resources and or-
chestrate the distributed operations at the sensors. Furthermore,
we propose an adaptive resource allocation model to manage the
congestion within WSNs, where the controller reallocates the
available bandwidth in areas where congestion occurs. We for-
mulate the problem as a NUM problem and evaluate it on repre-
sentative scenarios. The evaluation results confirm that SDSense
can enhance the average network throughput by 80% compared
to its counterparts while using the proposed demand based rate
allocation. Table I presents a list of acronym used in this work.

The remaining paper is organized as follows. Section II
presents and reviews state-of-the-art software-defined WSN
work related to SDSense. The optimization model for joint rout-
ing and rate allocation is presented in Section III. We present
the design of each functional module of SDSense architecture
in Section IV. The next section defined the evaluation envi-
ronment for SDSense. Section VI discusses on the evaluation
results following the concluding remarks in Section VII.

II. RELATED WORK

This paper argues by construction that SDN is an effective
framework for developing protocols for WSNs. The decoupled
data and logically centralized control plane along with the net-
work programmability provide a flexible framework for imple-
menting network control strategies that are both efficient (e.g.,
implemented centrally) and agile (e.g., supported by distributed
control on the sensors). We believe that this is one of the first
systematic efforts to explore the use of SDNs in WSNs [10],

1868 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 68, NO. 2, FEBRUARY 2019

[11]. In the following, we outline SDN-based WSNs architec-
tures and protocols that are closely related to SDSense.

SDN-WISE [6], [7] proposed a stateful software-defined ar-
chitecture for WSN, i.e., sensors maintain the state information
of themselves and their neighbors. Sensors use this state infor-
mation to construct routes to convey control traffic towards the
control plane. SDN-WISE protocol stack consists of forwarding,
in-networking processing, and topology discovery layers. The
proposed architecture implements geographic routing and secu-
rity without guaranteeing reliable data transfer in the presence
of link failures. In addition, it does not provide any principled
approach of control tasks distributions.

SDWN [12] proposed a stateless architecture similar to SDN-
WISE for data aggregation and routing. However, the work in
[13] and SDN-TAP [14] extended SDN-WISE to support con-
gestion control and load balancing. In the former design, packets
are dropped according to their flow priority to realize conges-
tion control and load balancing. In SDN-TAP, controller-defined
alternate routes are followed by the traffic after experiencing
congestion. In [15] load balancing problem is formulated as
an optimization problem which cannot be solved in polynomial
time; thus, a heuristic is proposed. Baddeley et al. deployed RPL
(Routing Protocol for Low-Power and Lossy Networks) [16]
protocol for control traffic communication in software-defined
IoT (SDIoT) [8] network design. The controller dynamically
updates flow rules to allow high-priority flows to follow alter-
nate routes in the presence of interference and congestions. In
SDSense, congestion control and load balancing are accom-
plished through designing an adaptive and optimal rate alloca-
tion model at the controller. In addition, the load is distributed
among sensors through multiple edge-disjoint routes. These
routes are further used to separate control and data traffic with
associated priority queues.

A set of work considered energy minimization while designed
software-defined WSN. For example, Smart [17] migrates the
topology control, routing, QoS, mobility management, and lo-
calization in the controller, which makes sensors as simple for-
warders and reduces their energy consumption. In [18] controller
selectively broadcasts control packets to a subset of sensors to
reduce energy consumptions. An extension of SDWN controls
transmission power of sensors with the help of a controller to
save sensors’ energy [19]. A minimum-energy sensor activa-
tion problem is formulated in [20] as an optimization prob-
lem without supportive evaluation. SDSense by constructing
Gabriel-based topology guarantees optimal communication en-
ergy consumption. In addition, edge-disjoint routes in SDSense
can be used to support reliability, congestion control, and load
distribution.

Friedman et al. [21] proposed an extension of the Open-
Flow protocol and open virtual switch (OVS) to implement data
aggregation. The aggregated traffic uses conventional sensor
channel, whereas the control traffic between sensors and the
controller uses OpenFlow. SensorOpenFlow (SOF) [22] also
extended OpenFlow to support coexisting applications, data ag-
gregation, and in-band control traffic management. The authors
in [23] suggested using separate flow tables for routing and in-
network processing. These solutions do not support reliability,

control task delegation principle, and optimization model. In ad-
dition, they have little or no evaluation of their proposed design.

In WNOS [24] distributed operations of the data plane is
abstracted to applications to design a software-defined WSN
Operating System. It exploited the centralized view of the net-
work at the controller to automatically generate the distributed
cross-layer control program, which runs on sensors with an ab-
stract representation of radio hardware. In WNOS, control tasks
delegation is not done in a principled approach as in SDSense.
In addition, WNOS focused on the physical layer functions;
thus, may use SDSense to deploy additional layers. A survey on
software-defined WSNs can be found in [25], [26] and a survey
on software-defined wireless networks is presented in [10].

III. A MODEL FOR OPTIMAL RESOURCE ALLOCATION

In WSNs, distributed routing and congestion control usually
do not consider the entire network state, but rather rely on lo-
cal network state. Such local decisions may lead to inefficient
decisions, and oscillation may occur as decisions lead to conges-
tion moving from one location to another. Moreover, selecting
routes without considering available link capacity may have a
direct impact on the congestion. Finally, congestion may persist
and impact on time-critical data delivery if adaptive network
operation is missing. These design challenges can efficiently be
mitigated using software-defined WSN design as proposed in
SDSense. However, using a globally centralized controller may
not support the distributed network operations of WSNs. The
distributed operations can be optimized and orchestrated by the
logically centralized controller; whereas local controllers from
the sensors can implement that optimal but distributed opera-
tion. The proposed SDSense is based on this design philosophy,
where network functions associated with slowly changing states
are defined and optimized in the control module; whereas func-
tions that are associated with the fast-changing state are designed
using a NUM problem [27]. Thus, in this section, we define a
model of joint routing and rate allocation as a NUM problem.

We define a multihop wireless network as a set V consisting
of N sensors placed in a two-dimensional Euclidean space. Each
node is equipped with a single radio that can either receive from
or transmit to a neighbouring node within the radio range. Let
dij be the Euclidean distance between two nodes i and j. There
exists a radio link and a corresponding edge between nodes i and
j if they are in range with each other. More precisely, l = (i, j) ∈
E iff dij ≤ R. We further assume a fixed transmission rate
(or link capacity) cl . Let G(V,E) be the graph representation
of the network with N nodes and E edges, respectively. The
edges are chosen based on the radio range constraint. If we
consider protocol interference model [28], then a conflict graph
Gcg of G(V,E) can be defined as Gcg (Vcg , Ecg), where Vcg

corresponds to the links from G and Ecg are the edges among
them. Two nodes from Vcg are connected by an edge if they
share a common node (primary interference).

To control interference, we implement TDMA scheduling
where the transmission time is divided into globally synchro-
nized slots. Each link is allocated one or more slots to meet the
traffic demand. Multiple links can be active in the same time

HAQUE et al.: SDSENSE: AN AGILE AND FLEXIBLE SDN-BASED FRAMEWORK FOR WIRELESS SENSOR NETWORKS 1869

slot if they meet the constraints of the interference model: in
other words, they share no edges in Gcg . Note that alternative
interference models can be supported by identifying the legally
concurrent edges based on the interference model rules. We call
a set of active links assigned to a particular slot a configura-
tion u. The union of configurations is the set U of all link sets
that can be active simultaneously. Let xu

l and xu
l ′ be two binary

variables that take a value 1 if corresponding link is active in a
configuration u and 0 otherwise. The single radio constraint for
these two links per the protocol interference model is:

xu
l + xu

l ′ ≤ 1 + au
ll ′ ∀(l, l′) ∈ E l �= l′ (1)

where the binary variable au
ll ′ is defined as:

au
ll ′ =

{
1 if links l and l′ have no common nodes
0 otherwise

(2)

For a configuration, u, there will be a set of active links with
corresponding rate assignments such that a particular link l’s
entry, ru

l , is defined as:

ru
l =

{
xu

l × cl if l ∈ u

0 otherwise
(3)

The feasible rate region rm at the link layer can be defined
as:

rm =
∑
u∈U

ru
l ∀l ∈ E (4)

Next, let us consider fm which is a particular flow generated
from a sensor m, m ∈ S, such that:

fm =

⎧⎪⎨
⎪⎩

rm if m ∈ S

−rm if m ∈ D

0 otherwise

(5)

Let fm
l be the flow at a node i, i ∈ N − (S,D), through

a link l ∈ E for sensor m. Let w+(i) and w−(i) be the set
of all outgoing and incoming links from and to that node i,
respectively. The flow conservation constraints can be stated as:

∑
l∈w+ (i):i∈N

fm
l −

∑
l∈w−(i):i∈N

fm
l = 0 ∀i ∈ {N − S,D}

(6)∑
l∈w+ (i):i∈N

fm
l −

∑
l∈w−(i):i∈N

fm
l = rm ∀i ∈ {S} (7)

∑
l∈w+ (i):i∈N

fm
l −

∑
l∈w−(i):i∈N

fm
l = −rm ∀i ∈ {D} (8)

Let a configuration u be active for the time λu such that
λu ≥ 0 if u is scheduled, otherwise λu = 0. The link capacity
constrain then be defined as:

∑
m

fm
l ≤

∑
u∈U

λu × xu
l × cl ∀l ∈ E (9)

where ∑
u∈U

λu ≤ T (10)

fm
l ≥ 0

Next, we define the network utility function for our joint
optimization. Let Qm be the size of the queue of a sensor m
and corresponding rate be rm . Let bm be the minimum rate at a
sensor m that is defined as:

bm = Qm log(rm) (11)

The optimization problem allocates link bandwidth in such a
way that the perceived network utility is maximized:

maximize
∑
m

Qm log(rm) (12)

subject to : Equation 6 to 9
The objective function is a convex function that balances

the following two requirements: (1) it favors solutions where
the rate at each link is proportional to corresponding sensor de-
mand. We define the demand of each sensor as a function of
the available data at the sensors, and (2) the function rewards
fair allocation of the available rate among the sensors. The rout-
ing constraints (Eq 6 to 8) preserve the flow constraint while
choosing routes from sources to destinations. The scheduling
constraint states which links can be active at the same time
without interfering with each other. We use a standard schedul-
ing approach: first, we compute the conflict graph for a given
routing topology. Next, we define the feasible schedule region
based on the derived conflict graph. For evaluation purposes, we
consider the most widely adopted Protocol Interference Model
[29] to define the conflict graph.

IV. SDSENSE ARCHITECTURE

In this section, we define SDSense architecture that accom-
modates a logically centralized controller along with a local
controller associated with the software-enabled sensors. The
centralized control allows intentional control of the network
to place it in a state that may be difficult to achieve as emer-
gent behavior from distributed protocols. In addition, the func-
tionality of the network, which is encapsulated in the control
plane is centralized and can be modified, providing the ability
to evolve protocols easily, possibly without reprogramming the
sensors [30]. Resulting reconfiguration of the sensors is then
isolated to changes to the data plane configuration which is
supported by the SDN operation.

In SDSense, the data plane is composed of software-enabled
sensors associated with a local controller. The control plane
or controller manages the network functions and resides in the
sink, as well as distributed control agents that operate on the
sensors. We compose various network functions as individual
modules as part of the controller architecture. In addition, the
controller allocates tasks like dynamic radio parameter setting
to the local controllers. This decomposition reduces the control
burden from the global controller, as well as improves the re-
sponse time for the adaptation of the radio parameters where the

1870 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 68, NO. 2, FEBRUARY 2019

Fig. 1. Architecture of SDSense.

local controller can take effective decisions based on local infor-
mation. In this design, we emphasize exposing mechanisms at
the local controller but leave policy specification at the central-
ized controller, leaving the local controller essentially to be part
of the data plane. The decomposition also reduces the control
traffic flow between the sensors and the controller.

The architecture (Figure 1) supports essential modules such
as interference management and scheduling, topology control,
routing, and congestion control. However, any required func-
tions can be added to the controller as a new module without
modifying the existing architecture or reprogramming the sen-
sors. Several active modules execute in the controller; their de-
cisions must be combined to configure the network. We support
this functionality using a controller manager module that is
aware of all active modules and interfaces with them to inform
them of the relevant network state. In the following, we present
the design of individual modules in details.

Topology control module: This module incorporates with the
local controllers to construct and control reliable routing topol-
ogy. The local controller maintains and shares neighbor list with
the global controller, which on the other hand constructs and
maintains the entire network topology. Once the neighbor lists
from all the local controllers are gathered, the reliable routing
topology construction is conducted. This topology construction
is briefly outlined below, which is presented in detail in our
previous work [31].

The software-enabled sensors from the data plane can be rep-
resented as a graph G(V,E) consisting of V sensor nodes placed
in a 2-dimensional Euclidean space. We assume that the trans-
mission range of all sensors is R. Two nodes can communicate
with each other if and only if their Euclidean distance is at most
R. The ability to communicate is represented by an edge, in
E, between the corresponding nodes. The resulting graph, G(V,
E), is the physical topology of the network. G varies over time
due to the presence or absence of the links among nodes. The
topology construction problem is to define a subgraph of a given

Algorithm 1: k− Edge Connected Topology Dk (G).
1: Extract E1, the edges of a component-connected

spanning subgraph of G.
2: D1(G)← E1.
3: for i← 1 to k − 1 do
4: Remove edges of Di(G) and get the connected

components Di1(G),Di2(G),,Dil(G)
5: for j ← 1 to l do
6: Generate component-connected spanning subgraph

Dij (G).
7: end for
8: Merge Di(G),Di1(G),Di2(G), . . . , Dil(G) to obtain

Dk−1(G)
9: end for

physical topology, where packet routing will be performed; we
call this subgraph the routing topology.

We use a spanning structure as the basis of the construction of
the routing topology. We consider several spanning structures:
Minimum Spanning Tree (MST) [32], Shortest Path Tree (SPT)
and Gabriel Graph (GG) [9]. The detail definition of these span-
ning trees can be found in [31]. The reliable topology control in
SDSense uses GG, which can be defined as follows; Assume that
disk(u, v) is denoted by a circle containing u and v with the di-
ameter equal to the Euclidean distance between them. Then edge
(u, v) of G belongs to GG if and only if no other nodes w ∈ V
are located within or on the periphery of disk(u, v) [9]. Gabriel
graphs have relatively short links and therefore good energy-use
properties. The algorithm to design k-edge connected reliable
routing topology is presented in Algorithm 1.

Thus, if we construct a k = 2 edge-connected GG-based rout-
ing topology, there will be 2-edge disjoint routes between every
pair of sensors. We call that 2-edge connected routing topology
Gabriel2. Similarly, we use the terms MST2, SPT2, and DC-
SPT2 to represent MST, SPT, and DCSPT (Degree-Constrained
SPT) based 2-edge connected routing topology, respectively.
In addition, Gabriel is combined with the other topologies as
follows: DCSPT-Gabriel (DCGB) topology is a subgraph of G
which first constructs the subgraph following definition of DC-
SPT, then uses the Gabriel graph construction on the remaining
components. MST-Gabriel (MSGB) combines the MST con-
struction (first) followed by the Gabriel construction.

Complexity analysis: Finding the DCSPT, SPT, and MST
is O(V 2) if no special data structures are used. Whereas, for
Gabriel, if a node’s degree is d, then the algorithm requires
d2 operations to find its edges. Therefore, in the worst case,
each node takes O(V 2) to obtain the edges of the routing topol-
ogy. However, each node can find the edges locally, in parallel,
if implemented in a distributed way which takes O(V 2). In
the subsequent steps, we repeat the topology construction on
the edges that are not chosen in step 1, where the number of
nodes remain unchanged. Thus the complexity depends on k,
i.e., O(kV 2). In the following, we show that GG topology can
optimize the communication energy consumption, which is the
routing topology in SDSense.

HAQUE et al.: SDSENSE: AN AGILE AND FLEXIBLE SDN-BASED FRAMEWORK FOR WIRELESS SENSOR NETWORKS 1871

Definition 1: Let the distance between two vertices u, v ∈ V
in G(V,E) be the total weight of the shortest path between u and
v and be denoted by du,v . A subgraph G′(V,E ′), where E ′ ⊆
E, is a t-spanner of G if for every u, v ∈ V , d′u,v ≤ t · du,v ,
where d′u,v is the shortest path between u and v in G′. The
value of t is called the spanning ratio, i.e., the ratio of actual
path over the shortest path. If we replace the weight with the
communication energy, then corresponding spanning ratio is
called energy spanning ratio [33], [34].

The communication energy consumption can be defined us-
ing simple propagation model, i.e., dα

u,v + Ck , where α is the
path loss exponent and Ck is a constant. Thus, if a topology
guarantees energy spanning ratio of 1, then it is called a energy
spanner. It is proved in [34], [35] that GGis an energy spanner.

Theorem 1: The Gabriel based k-edge connected topology
Dk (G) for k = 2 is an energy spanner for the path loss exponent
α ≥ 2.

Proof: Construct a Gabriel based D1(G) rooted at r on a
given connected graph G(V,E). By definition D1(G) is an
energy spanner for α ≥ 2. Now consider G(V, (E \ Ẽ1)) to ex-
tract the Gabriel edges E2 and add these newly generated edges
to D1(G) to obtain D2(G). Assume that adding E2 to D1(G)
changes its spanning property. This can only happen if the set
of edges Ẽ1 are altered while choosing E2. However, E2 are
chosen from (E \ Ẽ1) leaving Ẽ1 and the spanning properties
of G(V, Ẽ1) unchanged. Thus, the Gabriel based Dk (G) for
k = 2 preserves the energy spanning property and is an energy
spanner. �

Once the reliable edge-disjoint routing topology is con-
structed at the global controller, it is shared among the local
controllers from the data plane elements. The Gabriel based re-
liable topology can locally be constructed at the sensors without
controller’s intervention. Local controller can furthermore de-
ploy a distributed scheduling. This can reduce control overhead
and improve network resource utilization.

Scheduling Module: SDSense deploys a collision-free TDMA
[36] scheduling algorithm in this module to arbitrate the shared
bandwidth by assigning links to slots to control the packet deliv-
ery. Our assisted living applications demand low latency. Thus,
we focus on TDMA based scheduling, which is energy efficient
and guarantees low delay compared to the CSMA based solu-
tions [36]. In particular, the sink computes a conflict graph [36]
that reflects which groups of links mutually interfere and hence
cannot be active simultaneously. This graph is then colored us-
ing a heuristic (highest degree node is colored first) to ensure
that interfering links of the original routing topology will not be
assigned to the same slot. This module collects the current rout-
ing topology from the topology module and derives a TDMA
based schedule. The scheduled slots are then disseminated to
the local controllers to configure packet forwarding.

Routing Module: This module has the task of determining
how the traffic will be routed through the network given the
available topology, sensor demands, and TDMA slot assign-
ments. In the distributed sensor network design, the forwarding
decisions are made locally, alternating between the two shortest
path parents. However, in SDSense the traffic will be routed
based on the solution of the NUM problem; a flow table entry is

Algorithm 2: Protocol to Forward Control Traffic.
1: Initialization:
2: for i← 1 to |V | − 1 do
3: set two best parents W1(vi) ∈ N(vi) and

W2(vi) ∈ N(vi) for each sensor node vi .
4: end for
5: Forwarding at node i:
6: if Queue(W1(vi)) ≥ γ ×MaxSize then
7: NHop(vi)←W2(vi)
8: else
9: NHop(vi)←W1(vi)

10: end if

configured by the routing module based on the NUM solution.
When a sensor receives a packet from a particular flow, it first
looks for an entry in the flow table. The packet is sent to the
port mentioned in the flow table entry. In the case of a packet
to a destination without a flow entry, the sensor requests a flow
table entry from the routing module. This is a control message
and will be routed using the default strategy in Algorithm 2.
Algorithm 2 states that initially each sensor chooses their two
best parents, W1(vi) and W2(vi), along the optimal and the next
optimal routes. During initial packet forwarding a sensor sends
a packet to W1(vi) and waits for the ACK that includes the
current queue status. In the subsequent forwarding, it checks
whether the queue utilization of W1(vi) reaches a threshold γ,
which is a configurable fraction of the queue capacity that can
be used to adjust the sensitivity of the algorithm. In that case,
the packet is forwarded to W2(vi). A sensor maintains a con-
stant number of neighbors with whom it communicates. Thus,
the communication and computation cost at a sensor is O(1);
thus the complexity of Algorithm 2 is O(V) for a network of V
sensors.

Upon receiving a new configuration request, the routing mod-
ule configures the flow table of the requested sensor based on the
global network view and the NUM solution. However, the local
controller has the flexibility to control the global configuration
to improve the efficiency. For example, the local controller is
configured to choose the available path in case one of the two
paths becomes unavailable. The local controller is also config-
ured in such a way that it attempts to send each packet until the
retry limit is reached before dropping it. We maintain two sepa-
rate queues Queued and Queuec for data and control messages,
and their corresponding weights are Wd and Wc , respectively,
where Wc > Wd .

Congestion control module: This module is designed to dy-
namically identify and react on the congestion based on the
optimal rate allocation model proposed in Section III. Sen-
sors gather event-based as well as periodic sensed data [37]:
event-based data is unpredictable and can be bursty in nature.
Moreover, event-data is often critical and must reach the sink as
quickly and reliably as possible [38]. One option in such a case
is to increase the rate allocated to sensors with such data.

The local controllers are configured in such a way that in
the case of unexpected queue build-up, it reports this event to

1872 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 68, NO. 2, FEBRUARY 2019

the global controller. The global controller learns the conges-
tion events through different local controllers. In the case of a
number of such congestions events, the global controller can
reassign (reschedule) the rate for the sensors based on their cur-
rent demand. Once the queue returns to a lower size, the local
controllers again report this event to the global controller. Effec-
tively, the global controller is learning and reacting to the net-
work state accordingly. In the case of non-SDN based queue
based congestion management mechanism [38], the local choice
of an upstream sensor based on its queue-status can lead to route
oscillation if intermediate sensors on the way to the sink are also
congested.

Data reporting module: The local controller on each sen-
sor selects which data to forward based on data reporting con-
figuration set by the centralized controller module. The local
controller also takes into account the availability of transmis-
sion bandwidth. For instance, we can have both periodic and
event-based bursty data. When such an event occurs, the local
controller may want to increase the rate to send the event data
to the sink as quickly as possible. If needed, the local controller
sends a control message to request the data reporting module to
reconfigure its current settings.

V. EVALUATION SETUP

In this section, we define the simulation environment and
the scenarios used in the performance evaluation. We imple-
ment and evaluate the performance of SDSense and its func-
tional modules based on the design presented in Section IV.
The controller is implemented at the sink, which controls a set
of software-enabled sensors with associated local controllers.
We implement the controllers and API in our simulation envi-
ronment in detail, modeling all control traffic, along with the
data traffic, within the same network.

We consider scenarios with N sensors that are placed accord-
ing to a uniform distribution in a square 100 m × 100 m area.
The transmission range of each sensor is fixed at 25 m. We vary
the number of sensors N (N ∈ 50, 75, 100, 125, 150) to control
the density of the network. The logically centralized controller
collects the neighbor lists from local controllers. It then builds
the k− edge connected topology, finds the conflict-free TDMA
schedule, and forwards this information to the local controllers.
We assume the presence of a sink and a set of 20 sources that
generate traffic at the beginning of each scheduling period. In
our evaluation, sources generate low to high volume of traffic
with probabilities ranging from 0.2 (low) to 1.0 (high). This
generated traffic are then routed towards the sink based on the
route configured by the logically centralized controller.

Given a physical topology, we first extract a 2-edge connected
routing topology. Any sensors from these routing topologies can
serve as a sink while offering 2-edge connected routes to rest of
the sensors. Thus, we choose the sensor with minimum schedul-
ing length as the sink; the idea is to help the packets to reach
a destination with minimum possible delay. Interestingly, mini-
mizing the schedule length leads to different locations of the sink
(according to this optimality criteria) for different topologies.
All results are averaged over 100 experiments with different

locations of sensors which were sufficient to bound the 95%
confidence intervals to be with 1% of the shown average.

The local controllers measure the congestion level at the sen-
sors as the occupied percentage of packets in the associated
queue. The sensors are considered congested if this percentage
exceeds a threshold triggering a notification to the centralized
controller. In the current evaluation, this threshold is 60% of the
queue size set based on an empirical evaluation. The local con-
troller sends a control message to the centralized one to inform
events such as the presence of congestion or the presence of
new route configuration requests. In the case of congestion, the
centralized controller monitors the number of such congested
sensors and the number of periods a sensor remains congested.
If a sensor remains congested for several consecutive periods or
a set of sensors report a congestion event, the global controller
invokes and solves the rate allocation problem to reallocate the
available network bandwidth. Generally, this leads to raising
the capacity allocated to congested sensors. Over the time the
sensors will get out of the congestion, and release the extra ca-
pacity demand to be used by other sensors in a future invocation
of the reallocation problem. The evaluated results are compared
to traditional distributed solutions.

VI. PERFORMANCE EVALUATION AND DISCUSSION

In this section, we first present a set of results that are con-
ducted to select an appropriate reliable routing topology to be
adopted in our SDSense framework. Then, we will illustrate
that traditional distributed routing and congestion management
will not be appropriate to support on time critical data delivery
where sensors’ resource demand and network congestion level
changes. We will then present the performance of SDSense to
show that software-defined network monitoring and manage-
ment along with adaptive resource allocation can efficiently
support the above-mentioned critical data delivery applications.

A. Reliable Topology Selection

We first measure the degree of reliability (the ability to pro-
vide alternative paths in the presence of broken links) of dif-
ferent 2-edge connected routing topologies. We then evaluate
their performance in terms of throughput, path length (delay),
and communication energy usage in various traffic conditions.
The results lead us to select an appropriate routing topology to
be deployed in SDSense. We define the degree of reliability as
the resilience of a routing topology to broken links estimated
as follows. We randomly choose a subset of links to remove
from each topology and measure the corresponding path length.
This result is shown in Figure 2 with different percentages of
randomly chosen failed or down links. MST2 has the worst per-
formance due to its longer hop paths. The Gabriel-based topolo-
gies have the best performance due to more available alternative
paths.

The next set of experiments is conducted with varying net-
work traffic density by changing the packet generation probabil-
ity at the traffic generators. In these experiments, we introduce
a link failure probability which is fixed for all links. Figures 3
and 4 present the average packet delivery ratio, path length,

HAQUE et al.: SDSENSE: AN AGILE AND FLEXIBLE SDN-BASED FRAMEWORK FOR WIRELESS SENSOR NETWORKS 1873

Fig. 2. Reliability measurement in the presence of link failures.

Fig. 3. The average packet delivery ratio and number of hops with different
packet generation probability.

and energy consumption. The interesting outcome of these ex-
periments is the impact of sink locations on the performance.
The sink location with optimal schedule period is different for
different topologies; this leads to a substantial difference in their
performance. For example, the sinks are mostly located at the
edge of the network for DCSPT2 and SPT2, which leads to
higher average path lengths. The location of the sink was se-
lected during topology construction to minimize the average
transmission schedule: for DCSPT2 and SPT2 this results in
favoring edge nodes given the high contention in the middle of
the topology. Longer paths are more likely to break with link
failure, leading to a lower packet delivery ratio. In contrast, in

Fig. 4. The average communication energy uses with different packet gener-
ation probability.

the Gabriel-based topologies, the sink locations that provide the
smallest schedule length are mostly centrally located. This re-
sults shorter path lengths that eventually help packets to quickly
reach destinations, despite the average static path length being
slightly longer in Gabriel graphs. It is likely that the other topolo-
gies could benefit from a more centrally located sink even if it
does not minimize the schedule length, but we did not consider
such heuristics in sink selection.

We also measure the communication energy used by differ-
ent topologies. We consider the energy for both transmissions
and any retransmissions in case of unsuccessful attempts. For
this reason, we expect the energy consumption of the topolo-
gies (shown in Figure 4) to be similar to their delivery ratio.
The downward trend of the graphs in Figure 3 and 4 can be
explained by the lower packet delivery ratio at higher loads,
leading to more frequent delivery failures due to contention,
particularly for longer paths. We conclude that Gabriel-based
routing topologies are more robust than other topologies. These
topologies also have the best communication energy consump-
tion with a moderate path length. Thus, we deploy Gabriel based
routing topology in the proposed SDSense architecture.

B. Performance of Distributed Protocols

In this set of experiments, we evaluate the performance of
distributed congestion-aware routing on Gabriel-based topol-
ogy. We consider a set of deterministic and non-deterministic
protocols to show that distributed protocol may not be a good
candidate to support on time critical data delivery.

Figure 5 compares the four distributed routing protocols on
Gabriel-based topology. The path strategy alternates between
the shortest and second shortest routes. We have defined three
variants of path; namely, delay2, delay4, and delay4-prob. The
former two and path are deterministic schemes; whereas, the
latter one is a probabilistic approach. The delay2 and delay4 se-
lect the less congested next-hop parent out of two and four best
choices, respectively. In the case of delay4-prob, four best next-
hop candidate neighbors are assigned weight relative to their
queue utilization. Then, a less congested neighbor is chosen
probabilistically. The simulation results show that considering
congestion helps improve the throughput of delay2. The other

1874 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 68, NO. 2, FEBRUARY 2019

Fig. 5. The average packet delivery ratio and number of hops in Gabriel based
topology.

two variants that consider more parents and potentially longer
paths take a longer time to reach the sink. Thus, having at least
one high-quality forwarding alternative helps performance, but
having more does not lead to additional improvements [39].
Figure 5 shows that delay4-prob experiences short delays on a
successful packet delivery, which indicates this approach may
be useful only for closely located source-destination pairs. Path
uses slightly longer paths with a higher throughput compared to
the probabilistic approaches. Thus, we may conclude that de-
terministic distributed packet forwarding is useful compared to
the probabilistic approach. However, the lack of global network
view may lead these deterministic solutions to a local optimal
and may create oscillation across the network. In the follow-
ing evaluation, we will show how the global network view and
the network reprogramming capability of SDSense help it to
achieve better network performance.

C. Performance Improvement Using SDSense

In this section, we first present a numerical analysis of our
NUM model to illustrate its demand-based fair rate allocation.
For this purpose, we consider a simple scenario where two
sensors share radio resources while propagating sensed data to a
sink. Each communication link has a capacity of 2 Mbps, where
the demand for these two sensors changes over time. According
to our model rate allocation must be demand-based, which is

Fig. 6. Dynamic rate sharing between two sensors.

Fig. 7. The average network throughput with varying traffic load.

reflected in the rate allocation shown in Figure 6. In addition, the
figure shows that the model ensures fair rate allocation, which
allows sensors with low demand to continue to forward their
traffic.

Next, we perform an extensive performance evaluation of
the proposed SDSense framework in terms of throughput, path
length, and communication energy consumption and compare
the results with traditional distributed solutions presented in
[31]. For this purpose, we consider 100 sensors classified as 20
sources, one sink (where the controller is implemented), with
the remaining sensors relaying traffic if necessary. We also vary
the traffic load from light to heavy to observe the rate adaptation
performance of SDSense. In addition, we create link failure
to capture the reliability performance of SDSense. To the best
of our knowledge, SDSense is the first software-defined WSN
framework that supports reliability in addition to performance
and scalability (in terms of supporting varying loads).

The average network throughput of SDSense and traditional
distributed protocols is presented in Figure 7. The demand-based
rate allocation through programmable sensor network signifi-
cantly improves the performance. In particular, we consider low
to high traffic density and observe that in the low traffic density,
the SDN-based dynamic resource allocation improves the over-
all network throughput by 30%. The non-SDN based scheme
does not have dynamic rate control but locally chooses a less
congested neighbor on the way towards the sink. Nonetheless,
this congestion-aware neighbor selection is not enough under

HAQUE et al.: SDSENSE: AN AGILE AND FLEXIBLE SDN-BASED FRAMEWORK FOR WIRELESS SENSOR NETWORKS 1875

Fig. 8. The average path length with varying traffic load.

Fig. 9. The average communication energy consumptions.

heavy traffic density. As the traffic increases, the demand-based
resource allocation enhances the performance by 80% compared
to the distributed heuristic based congestion management.

The average path length in terms of number of hops is shown
in Figure 8. The non-SDN based path length is smaller compared
to the SDN-based one under low to moderate traffic load. How-
ever, the scenario is flipped under heavy traffic conditions. This
behavior suggests that the demand based rate allocation can bet-
ter manage the heavy traffic condition to offer high throughput
leaving the network less congested. However, this may happen
for the source-destination pairs that are not separated by a long
path, so that the packets can reach the destination quickly. This
is observed in the Figure 8, where the path lengths get shorter
with the increasing traffic loads.

Furthermore, we evaluate the average communication energy
consumptions of the successfully delivered packets for the SDN
and non-SDN based schemes. For this purpose, we consider
both the transmission and retransmission attempts of the suc-
cessfully delivered packets. Thus, it is expected that the en-
ergy consumption behavior would follow the throughput trend.
The SDN-based scheme delivers more packets compared to the
standard solution, which is reflected through the higher com-
munication energy consumptions presented in the Figure 9. We
would like to mention that the performance trend in terms of the
communication energy consumption with or without software-
defined design is similar. This is because communication energy
consumption depends on the link (topology structure) between
a sender and a receiver. However, we show this result to indicate
that the SDSense retains the communication energy consump-
tion trend, which is proportional to the number of transmissions
and retransmission for successful packet delivery.

Fig. 10. The average number of control packets and corresponding
throughput.

D. The Impact of the Control Overhead

We are able to more directly configure the network in reaction
to the observed traffic conditions using the proposed SDSense.
However, this requires additional communications to relay the
network state from the data plane elements, and from the con-
troller to reconfigure these elements. In contrast, the traditional
local forwarding heuristics do not introduce any such control
overhead. In this section, we characterize the observed overhead
of the SDSense operation, which most of the existing solutions
for software-defined WSNs overlooked.

Figure 10 shows the impact of the congestion alert threshold
on the amount of control traffic and corresponding network
throughput as the threshold is varied from 50% to 90% (in
terms of queue utilization). The lower the threshold, the more
reactive the network is, but the higher the overhead. The average
number of control packets decreases 51% as the threshold is
increased from 50% to 90%, which is shown in the top sub-
figure. However, in the bottom sub-figure, it is shown that the
overall network throughput is 17% lower due to the slower
reaction to the presence of congestion. Thus, we can select
an appropriate threshold value to balance between the control
overhead and the achieved throughput.

VII. CONCLUSIONS

In this work, we have proposed an SDN-based event-driven
WSN framework called SDSense that delegates control tasks
among logically centralized and local controllers based on a
principled design approach. Our principled approach decom-
poses the design solutions into two components: (1) A topology-
control, scheduling and baseline rate allocation component that
target the fixed or slowly changing components of the network;
and (2) A congestion avoidance and rate reallocation component
that react to the dynamic behavior of the network in a principled
way, based on a NUM framework. For topology control, we have
proposed a generalized algorithm to construct k-edge connected
routing topology for WSNs, which supports any spanning struc-
tures. We have evaluated a set of k-edge connected topologies in
terms of their reliability in the presence of link failure. We have
evaluated the performance of different topologies with respect

1876 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 68, NO. 2, FEBRUARY 2019

to the quality of the available paths and resilience to failure.
Once we have identified the topology, we have carried out a
baseline capacity allocation. We assume a TDMA network to
reduce collisions and provide a more predictable performance.

The second component of the framework is targeted towards
managing dynamic and emergent behavior. To manage conges-
tion, we have first explored local heuristics that spread the traffic
at congested nodes across multiple paths. However, these sim-
ple local strategies are not guaranteed to find the best paths
through the network and may be susceptible to oscillation. In
addition, given that the TDMA schedule requires a centralized
solution, they cannot reallocate the available bandwidth or the
routing topology. As a result, we have defined a global NUM
problem that jointly optimized rate allocation and routing con-
sidering the demand of sensors. This optimal rate allocation is
then implemented using the SDSense framework. In SDSense,
network functions like routing, topology and congestion control
are deployed in a logically centralized controller as interacting
but isolated modules. The architecture also incorporated local
controllers at the sensors to collect local information and im-
plement any distributed functionality. We have evaluated the
proposed framework under a number of scenarios. We show
that it provides substantial improvement to network operations,
especially when congestion arises.

REFERENCES

[1] M. Casado, M. Freedman, J. Pettit, J. Luo, N. McKeown, and S. Shenker,
“Ethane: Taking control of the enterprise,” SIGCOMM Comput. Commun.
Rev., vol. 37, no. 4, pp. 1–12, Aug. 2007.

[2] M. Casado et al., “Rethinking enterprise network control,” IEEE/ACM
Trans. Netw., vol. 17, no. 4, pp. 1270–1283, Aug. 2009.

[3] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless
sensor networks: A survey,” Comput. Netw., vol. 38, no. 4, pp. 393–422,
Mar. 2002.

[4] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson,
“Wireless sensor networks for habitat monitoring,” in Proc. 1st ACM Int.
Workshop Wireless Sensor Netw. Appl., 2002, pp. 88–97.

[5] K. D. Kim and P. R. Kumar, “An overview and some challenges in
cyber-physical systems,” J. Indian Inst. Sci., vol. 93, no. 3, pp. 341–352,
Jun. 2013.

[6] L. Galluccio, S. Milardo, G. Morabito, and S. Palazzo, “SDN-WISE:
Design, prototyping and experimentation of a stateful SDN solution for
wireless sensor networks,” in Proc. IEEE Int. Conf. Comput. Commun.,
Apr. 2015, pp. 513–521.

[7] L. Galluccio, S. Milardo, G. Morabito, and S. Palazzo, “SDN-WISE:
Design prototyping and experimentation of a stateful SDN solution for
wireless sensor networks,” in Proc. IEEE Int. Conf. Comp. Commun.
(INFOCOM), Hong Kong, Apr. 2015.

[8] M. Baddeley, R. Nejabati, G. Oikonomou, M. Sooriyabandara, and
D. Simeonidou, “Evolving SDN for low-power IoT networks,” in Proc.
4th IEEE Int. Conf. Netw. Softwarization, 2018, pp. 71–79.

[9] K. Gabriel and R. Sokal, “A new statistical approach to geographic varia-
tion analysis,” Systematic Zoology, vol. 18, pp. 259–278, 1969.

[10] I. Haque and N. Abu-Ghazaleh, “Wireless software defined network-
ing: A survey and taxonomy,” IEEE Commun. Surv. Tut., vol. 18, no. 4,
pp. 2713–2737, Oct.–Dec. 2016.

[11] D. Kreutz, F. M. V. Ramos, P. E. Verssimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig, “Software defined networking: A comprehensive
survey,” Proc. IEEE, vol. 103, no. 1, pp. 14–76, Jan. 2015.

[12] S. Costanzo, L. Galluccio, G. Morabito, and S. Palazzo, “Software defined
wireless networks: Unbridling SDNs,” in Proc. Eur. Workshop Softw. De-
fined Netw., Oct. 2012, pp. 1–6.

[13] P. Dio et al., “Exploiting state information to support QoS in software-
defined WSNs,” in Proc. Mediterranean Ad Hoc Netw. Workshop, 2016,
pp. 1–7.

[14] H. Fotouhi, M. Vahabi, A. Ray, and M. Björkman, “SDN-TAP: An SDN-
based traffic aware protocol for wireless sensor networks,” in Proc. 18th
Int. Conf. e-Health Netw., Appl. Services, Sep. 2016.

[15] G. Li, S. Guo, and Y. Yang, “Traffic load minimization in software defined
wireless sensor networks,” IEEE Internet Things J., vol. 5, no. 3, pp. 1370–
1378, Jan. 2018.

[16] A. Brandt et al., “RPL: IPv6 routing protocol for low-power and lossy
networks,” IETF RFC 6550, 2012.

[17] A. D. Gante, M. Aslan, and A. Matrawy, “Smart wireless sensor net-
work management based on software-defined networking,” in Proc. 27th
Biennial Symp. Commun., Jun. 2014, pp. 71–75.

[18] J. Wang et al., “A software defined network routing in wireless multihop
network,” J. Netw. Comput. Appl., vol. 85, no. C, pp. 76–83, May 2017.

[19] S. Tomovic and I. Radusinovic, “Performance analysis of a new SDN-
based WSN architecture,” in Proc. 23rd Telecommun. Forum Telfor,
Nov. 2015, pp. 99–102.

[20] D. Zeng, P. Li, S. Guo, T. Miyazaki, J. Hu, and Y. Xiang, “Energy min-
imization in multi-task software-defined sensor networks,” IEEE Trans.
Comput., vol. 64, no. 11, pp. 3128–3139, Jul. 2015.

[21] R. Friedman et al., “An architecture for SDN based sensor networks,” in
Proc. 18th Int. Conf. Distrib. Comput. Netw., 2017, pp. 20:1–20:10.

[22] T. Luo, H. Tan, and T. Quek, “Sensor OpenFlow: Enabling software-
defined wireless sensor networks,” IEEE Commun. Lett., vol. 16, no. 11,
pp. 1896–1899, Nov. 2012.

[23] Y. Choi, Y. Choi, and Y.-G. Hong, “Study on coupling of software-defined
networking and wireless sensor networks,” in Proc. 8th Int. Conf. Ubiqui-
tous Future Netw., 2016, pp. 900–902.

[24] Z. Guan, L. Bertizzolo, E. Demirors, and T. Melodia, “WNOS: An
optimization-based wireless network operating system,” in Proc. IEEE
19th Int. Symp. Mobile Ad Hoc Netw. Comput., 2018.

[25] H. I. Kobo, A. M. Abu-Mahfouz, and G. P. Hancke, “A survey on software-
defined wireless sensor networks: Challenges and design requirements,”
IEEE Access, vol. 5, pp. 1872–1899, Feb. 2017.

[26] A. Zahmatkesh and T. Kunz, “Software defined multihop wireless net-
works: Promises and challenges,” J. Commun. Netw., vol. 19, no. 6,
pp. 546–554, Dec. 2017.

[27] M. Chiang, S. H. Low, A. R. Calderbank, and J. C. Doyle, “Layering as
optimization decomposition: A mathematical theory of network architec-
tures,” Proc. IEEE, vol. 95, no. 1, pp. 255–312, Jan. 2007.

[28] P. Gupta and P. R. Kumar, “The capacity of wireless networks,” IEEE
Trans. Inf. Theory, vol. 46, no. 2, pp. 388–404, Mar. 2000.

[29] L. Chen, S. H. Low, M. Chiang, and J. C. Doyle, “Cross-layer congestion
control, routing and scheduling design in ad hoc wireless networks,” in
Proc. 25th IEEE Int. Conf. Comput. Commun., Apr. 2006, pp. 1–13.

[30] S. S. Kulkarni and L. Wang, “MNP: Multihop network reprogramming
service for sensor networks,” in Proc. 25th IEEE Int. Conf. Distrib. Com-
put. Syst., 2005, pp. 7–16.

[31] I. Haque, M. Islam, and J. Harms, “On selecting a reliable topology
in wireless sensor networks,” in Proc. IEEE Int. Conf. Commun., 2015,
pp. 6376–6382.

[32] N. Li, J. C. Hou, and L. Sha, “Design and analysis of an MST-based topol-
ogy control algorithm,” in Proc. 22nd Annu. Joint Conf. IEEE Comput.
Commun. Soc., Mar. 2003, pp. 1702–1712.

[33] K. Alzoubi, X. Li, Y. Wang, P. Wan, and O. Frieder, “Geometric spanners
for wireless ad hoc networks,” IEEE Trans. Parallel Distrib. Syst., vol. 14,
no. 4, pp. 408–421, Apr. 2003.

[34] R. Rajaraman, “Topology control and routing in ad hoc networks: A
survey,” ACM SIGACT News, vol. 33, no. 2, pp. 60–73, 2002.

[35] I. Stojmenovic and X. Lin, “Power-aware localized routing in wire-
less networks,” IEEE Trans. Parallel Distrib. Syst., vol. 12, no. 11,
pp. 1122–1133, Nov. 2001.

[36] S. Ergen and V. Pravin, “TDMA scheduling algorithms for wireless sensor
networks,” Wireless Net., vol. 16, no. 4, pp. 985–997, May 2010.

[37] S. Tilak, N. B. Abu-Ghazaleh, and W. Heinzelman, “A taxonomy of wire-
less micro-sensor network models,” ACM SIGMOBILE Mobile Comput.
Commun. Rev., vol. 6, no. 2, pp. 28–36, 2002.

[38] Y. Sankarasubramaniam, O. Akan, and I. Akyildiz, “ESRT: Event-to-sink
reliable transport in wireless sensor networks,” in Proc. 4th ACM Int.
Symp. Mobile Ad Hoc Netw. Comput., 2003, pp. 177–188.

[39] M. Mitzenmacher, “The power of two choices in randomized load balanc-
ing,” IEEE Trans. Parallel Distrib. Syst., vol. 12, no. 10, pp. 1094–1104,
Oct. 2001.

Authors’ photographs and biographies not available at the time of publication.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

