This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2025.3587641

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, AUGUST 20XX 1

streamline: Accelerating Deployment and
Assessment of Real-time Big Data Systems

Md. Monzurul Amin Ifath, Student Member, IEEE, Tommaso Melodia, Fellow, IEEE,
and Israat Haque, Senior Member, IEEE

Abstract—Real-time stream processing applications (e.g., loT data
analytics and fraud detection) are becoming integral to everyday life.
A robust and efficient big data system, especially a streaming pipeline
composed of producers, brokers, and consumers, is at the heart of the
successful deployment of these applications. However, their deployment
and assessment can be complex and costly due to the intricate inter-
actions between pipeline components and the reliance on expensive
hardware or cloud environments. Thus, we propose streamline, an agile,
efficient, and dependable framework as an alternative to assess stream-
ing applications without requiring a hardware testbed or cloud setup.
To simplify the deployment, prototyping, and benchmarking of end-
to-end stream processing applications involving distributed platforms
(e.g., Apache Kafka, Spark, Flink), the framework provides a lightweight
environment with a developer-friendly, high-level API for dynamically
selecting and configuring pipeline components. Moreover, the modular
architecture of streamline enables developers to integrate any required
platform into their systems. The performance and robustness of a de-
ployed pipeline can be assessed with varying network conditions and
injected faults. Furthermore, it facilitates benchmarking event streaming
platforms like Apache Kafka and RabbitMQ. Extensive evaluations of
various streaming applications confirm the effectiveness and depend-
ability of streamline.

Index Terms—Stream Processing, Big Data Applications, Performance
Evaluation, Reliability Testing, Apache Kafka, Apache Spark.

1 INTRODUCTION

HE high degree of big data generation and consumption
T transforms their usage in everyday life by the develop-
ment of stream processing applications [1]. These applica-
tions have gained popularity due to their ability to perform
real-time analytics for applications like financial transaction
monitoring, IoT sensor data processing, sentiment analysis,
or content recommendations. Usually, stream processing
pipelines consist of data sources, streaming platforms, en-
gines, storage, and visualization components. The majority
of Fortune 100 companies (e.g., Cisco, Goldman Sacks, Uber)
deployed stream processing platforms like Apache Kafka
[2], Apache Spark [3], and Apache Flink [4] to manage com-
plex, multi-component systems deployed across distributed

o MMA. Ifath and 1. Haque are with the Faculty of Computer Science,
Dalhousie University, Halifax, NS B3H 4R2, Canada.
E-mail: monzurul.amin@dal.ca; israat@dal.ca

o T. Melodia is with the Department of Electrical and Computer Engineer-
ing, Northeastern University, Boston, MA 02115, United States.
E-mail: melodia@northeastern.edu

servers [5]. However, the complexity and resource demand
of distributed streaming systems may hinder innovations.
Specifically, testing these systems relies on expensive hard-
ware testbeds (typically a cluster of servers arranged in
a predetermined, static configuration) or complex cloud
setups, which limits accessibility, agility, and innovations.
Moreover, setting appropriate communications (e.g., link ca-
pacity, routing scheme, faults) among components is pivotal
for performance and robustness analysis, but is not easy
across distributed components.

We may consider simulators (e.g., ns-3 [6] and OM-
NeT++ [7]) and emulators (e.g., CrystalNet [8], TurboNet
[9]) to assess functional correctness or scale of stream pro-
cessing applications; without inferring their performance in
real deployments. Network testbeds such as PlanetLab [10]
and Emulab [11] offer adequate computational resources
but lack flexibility in network topology customization and
require manual stream processing platform setup. Addition-
ally, there are initiatives in developing stream processing
assessment tools [12], [13], which focus on specific com-
ponents of the pipeline or their integration. For instance,
TRAK [12] focuses on assessing the reliability of the Apache
Kafka streaming platform by strategically injecting faults
at various levels within its architecture: broker, client, and
network. While NAMB [13] supports rapid benchmarking
and cross-platform evaluations of different platforms (e.g.,
Kafka, Flink, Storm), it lacks support for fine-grained net-
work configurations, cluster-level testing, and system-level
resource usage monitoring. Proprietary platforms like Con-
fluent [14] and Databricks [15] offer component-specific con-
nectors and specialized services, facilitating pipeline compo-
nent integration. However, their cost and potential vendor
lock-in can limit accessibility and flexibility. Unfortunately,
there is no accessible, agile, efficient, and dependable stream
processing framework to deploy and assess the end-to-end
performance of streaming applications.

To bridge this gap, we introduce a real-time big-
data stream processing application assessment framework
named streamline. Developers can implement and deploy
it on a standalone computer and configure the required
components of the processing pipeline using a developer-
friendly high-level APL It abstracts the complexities of the
underlying systems setup to developers and enables the
rapid deployment and configuration of various stream pro-
cessing pipelines. The modularized architecture allows one

Authorized licensed use limited to: Dalhousie University. Downloaded on September 11,2025 at 03:16:12 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2025.3587641

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, AUGUST 20XX 2

to choose different platforms (e.g. Apache Kafka, RabbitMQ,
Apache Spark, and Apache Flink) based on the application
demands. Once deployed and configured, developers can
dynamically vary network conditions (link bandwidth, la-
tency, faults) to assess the performance and robustness of
streaming applications over single-node or cluster-based de-
ployments. Typical use cases of streamline include measur-
ing throughput or latency with varying network conditions
(e.g., link bandwidth and latency), evaluating system behav-
ior under network faults (e.g., network-level disruptions)
and failures within streaming platforms, and benchmarking
streaming platforms. Note that proprietary infrastructures
that require native hardware execution are out of the scope
of streamline.

We implement a prototype of streamline and evaluate it
across eight streaming applications. These include sentiment
analysis and network traffic monitoring, among others. To
enable communication among pipeline components, we use
Mininet [16], a lightweight yet flexible network emulator.
The results show that streamline incurs less than 10% devia-
tion in latency compared to hardware testbeds and achieves
15-33% lower latency compared to an OpenStack-based
cloud setup, with only 7% additional CPU usage at scale.
Finally, we assess its benchmarking capability by comparing
Apache Kafka and RabbitMQ under high-latency network
conditions, revealing that Kafka’s latency escalates signifi-
cantly relative to RabbitMQ. The contributions of streamline
are summarized below.

o We present streamline, a lightweight and extensible
framework for prototyping, deploying, and bench-
marking real-time stream processing pipelines. Its
modular architecture supports failure injection, net-
work emulation, and clustered deployments under
controlled conditions.

o Streamline exposes a configurable interface that inte-
grates diverse stream processing engines and event
streaming platforms, supporting reproducible exper-
iments through scenario-specific configurations.

o We demonstrate streamline’s dependability through
extensive evaluations across varied environments
(emulated, cloud-based, and hardware testbeds)
showing less than 10% deviation in latency and
comparable performance to state-of-the-art solutions
like NAMB.

o We show streamline’s capability to assess reliability
and fault tolerance of distributed stream applications
by systematically injecting network and component
faults and measuring their impact on performance
(e.g., message loss, recovery time).

e To support reproducibility and extension, we re-
lease streamline as open-source software under the
Apache licenseﬂ including configuration templates,
integration guides, and per-application workflows.

A preliminary version of this work appeared in [18],
which is significantly extended in this work. In contrast
to the prior version which focused on rapid prototyping
of streaming application, sfreamline is a generalized and
extensible framework designed to support a wide spectrum

1. To be released in GitHub [17] upon paper acceptance.

Data Event Stream
sources streaming processing
engine

2 ==
© ==

Visualization

@

Storage

Cluster

00,
Brokers
&
N

Fig. 1: Typical stream processing application pipeline.

of performance and reliability evaluations. evaluations. The
earlier tool can be considered a specialized instance of the
more generalized streamline framework, which introduces
significantly enhanced capabilities. To be specific, firstly, the
revised architecture is completely modularized, allowing
plug-in pipeline components through the extended APL
For instance, developers can now choose combinations of
various popular platforms and engines like Apache Kafka,
RabbitMQ, Apache Spark, and Apache Flink. Secondly, we
introduce new networking and reliability testing features,
e.g., bandwidth conditions and impacts of component fail-
ures, which can be tested in a cluster deployment. Finally,
we conduct extensive evaluations of streamline and com-
pare results against hardware testbeds, virtualized cloud
environment, and start-of-the-art solution, including bench-
marking streaming platforms to confirm its usability, effi-
ciency, and dependability. These enhancements collectively
bolster streamlineg’s capabilities, establishing it as an acces-
sible, efficient, and dependable tool for innovation in stream
processing applications.

2 BACKGROUND AND MOTIVATION

This section presents the necessary background to under-
stand our contribution along with the motivation for devel-
oping sfreamline.

Stream Processing Pipeline: In batch processing, data
is accumulated and stored for a fixed time interval and
then processed in bulk at the end of each interval. Batch
processing systems require large amounts of data storage
and computation power to handle the massive influx of
data, which may incur latency between minutes and days.
Stream processing, on the other hand, offers real-time pro-
cessing of a continuous stream of data in personalized
recommendations, financial fraud detection, log monitoring
in smart grids, IoT telemetry, i.e., applications requiring
high throughput and low latency [5]. A stream processing
pipeline consists of data sources, event streaming platforms,
processing engines, storage systems, logging mechanisms,
and visualization stages (Figure[T). As each such component
is a distributed system, we can refer to the pipeline as a
system of systems. For example, Uber’s data analytics infras-
tructure [19] integrates third-party platforms like Apache
Kafka and Apache Flink for event streaming and stream
processing, respectively, with their proprietary workflow
management solutions. These systems typically operate on
a distributed cluster of servers, relying on high-speed net-
working for coordination.

Event Streaming Platforms: These systems collect and
distribute events (e.g., transactions, sensor readings, or
database updates) across data sources and sinks. Event
streaming platforms like Apache Kafka, Google Cloud

Authorized licensed use limited to: Dalhousie University. Downloaded on September 11,2025 at 03:16:12 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2025.3587641

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, AUGUST 20XX 3

Pub/Sub, and Apache Pulsar operate on the publish-
subscribe messaging pattern to facilitate flexible data flow
and dynamic addition or removal of clients without requir-
ing them to be constantly online. This asynchronous archi-
tecture supports decoupled components, enabling servers
and clients to interact conveniently and significantly en-
hance scalability and adaptability. Apache Kafka [2] is the
most widely used publish-subscribe system that combines
log aggregation and messaging over a comprehensive log
for reliable and ordered data retrieval.

Stream Processing Engine: Stream processing engines
allow developers to conduct operations like querying, filter-
ing, and aggregating on streaming data without knowing
low-level deployment intricacies. These engines generally
fall into two categories based on their programming models
and execution modes. Compositional engines like Apache
Storm, Apache Samza, and Apache Apex allow developers
to construct directed acyclic graphs (DAGs) of operators for
data processing. In contrast, Declarative engines, including
Apache Spark Structured Streaming, Apache Flink, and
Azure Stream Analytics, enable query formulation using
declarative languages like SQL, abstracting the processing
logic from implementation details.

Network Platforms: Communication among pipeline
elements is pivotal for effective stream processing. Simu-
lators like NS-3 and OMNeT++ are popular choices for
assessing the functional correctness and scale of network-
ing systems without considering real deployments. On the
other hand, PlanetLab [10], Emulab [11], CloudLab [20],
and Chameleon [21]] are testbeds for networking systems
with realistic computation and communication capabilities,
i.e., offer a platform to assess the deployment feasibility
of a system. This benefit comes at the cost of testbeds
accessibility and their complex and time consuming setups.
For instance, developers need to configure required topolo-
gies and the forwarding behaviors of elements to enable
required communications among the components of stream
processing pipelines. Additionally, they must instantiate
data processing platforms (e.g., stream processing engines
and messaging systems) from scratch.

Emulators are a middle ground between the above two
alternatives. CrystalNet [§] and TurboNet [9] have their
own strength and weaknesses. The former emulates large-
scale network control plane functionalities without support-
ing dynamically configuring data plane attributes like link
delay and bandwidth. TurboNet can emulate both planes
but requires additional hardware support for host applica-
tions. The container-based emulator Mininet [22] emulates
software-defined networking (both data and control plane)
with portability and agility in testing network functions.
Thus, we adopt Mininet in streamline to enable realistic
communications among stream processing pipeline compo-
nents.

Pipeline Assessment: Like traditional software testing,
developers must address the stream processing testing chal-
lenge across various levels of granularity, encompassing
unit, integration, and system level testing [23]. While unit
tests are prevalent and many stream processing systems of-
fer their own unit testing modules (e.g., Kafka test-utils [24],
Flink Spector [25]), integration and system testing receive
less attention and often necessitate developers to devise

custom ad-hoc solutions. A frequently employed method
for integration testing involves mocking, where frameworks
like Mockito [26] simulate interactions among different com-
ponents within a data processing pipeline. Proprietary plat-
forms such as Confluent [14] and Databricks [15] provide
diverse services tailored to specific pipeline components.
Still, they can be expensive and may lead to vendor lock-
in when transitioning to alternative technologies. However,
none of these solutions adequately address system-level
testing needs or offer control over underlying infrastruc-
ture variables (e.g., networking delays, failure occurrences)
while supporting various stream processing platforms with
consistent performance, reliability, and scalability. To ad-
dress these shortcomings, we developed sfreamline as a
modular, configurable, efficient, and reliable platform to
deploy and assess stream processing applications.

3 RELATED WORK

This section presents works related to streamline to position
its contribution.

There are a few attempts to develop tools to deploy
and assess the entire stream processing pipeline, including
communications among components. Kallas et al. present
DiffStream [27], a library designed for differential testing
of stream processing systems. This library facilitates the
comparison of output streams from two distinct stream
processing programs given identical input streams, even
allowing for reordering within the output. DiffStream also
enables developers to define dependencies among stream
items and, through integration with Apache Flink, provides
bug detection, program parallelization, and monitoring with
minimal overhead. However, DiffStream’s utility is curtailed
by its inability to support stateful or windowed operations,
external interactions, or side effects, nor does it aid in
crafting equivalent program versions or determining de-
pendence relations. On another front, TRAK [12] serves as
an instrument for assessing the reliability of event stream-
ing platforms like Apache Kafka, employing fault injection
via docker containers and Pumba to gauge message loss
and duplication rates in unreliable networks. Nonetheless,
TRAK'’s focus is narrowly confined to a pair of reliability
metrics and does not extend to the broader spectrum of
stream processing application concerns. NAMB [13], an-
other relevant tool in this domain, is a high-level prototype
generator that supports rapid benchmarking of stream pro-
cessing platforms like Flink and Storm using YAML-based
topology descriptions. It allows synthetic or Kafka-based
data injection and simulates workload via busy-wait loops.
However, NAMB focuses on application-level prototyping
without supporting realistic network emulation, fault injec-
tion, or runtime monitoring.

In the realm of benchmarkingﬂ a couple of tools
have been developed for stream processing engines and
pipelines. Gadget [28] supports stream processing engines
Apache Flink and RocksDB to analyze streaming state ac-
cess workloads. The developers require configuring and
deploying a stream processing system integrated with an
appropriate key-value store to execute queries reflective

2. In benchmarking, system performance is measured and compared
against established standards or metrics.

Authorized licensed use limited to: Dalhousie University. Downloaded on September 11,2025 at 03:16:12 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2025.3587641

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, AUGUST 20XX 4

TABLE 1: streamline vs. existing approaches. ESP = Event
Streaming Platform, SPE = Stream Processing Engine, DS =
Data Store.

Approach
DiffStream

Quality attribute Network condition Fault injection Stateful operation Platform support Open source

Performance No No No SPE Yes
Scalability

TRAK Reliability No Yes No ESP No

NAMB Performance No| No| Partial ESP, SPE Yes

Gadget Performance No No Yes SPE, DS Yes
Scalability

Karimov Performance No| No| Yes SPE No
Scalability

Chintapalli Performance Yes No Yes ESP, SPE, DS Yes

ShuffleBench Performance No No Yes SPE Yes

Scalability

Performance Yes Yes Yes
Reliability
Scalability

streamline ESP, SPE, DS Yes

of the performance of streaming state stores. However,
the tool does not support crucial state measures like fault
tolerance, consistency, and recovery, which are essential in

applications prone to network partitions, such as
(see Section§).

Karimov et al. [29] develop a benchmarking suite with
novel metrics and methodologies for quantifying the perfor-
mance of stream processing systems, assessing metrics such
as latency, throughput, and windowed events timing. How-
ever, the assessment considers synthetic data for certain
workloads. Also, it does not support different topologies
with varying resources and fault tolerance. Chintapalli et al.
[30] propose a complete pipeline benchmarking tool with
Apache Kafka and Redis to emulate practical production
environments. Yet, it falls short in considering the impacts of
network conditions, data representation, and manipulation
on streaming engines’ performance. Recent efforts such
as ShuffleBench [31] presents a cloud-native, open-source
benchmark tailored to large-scale data shuffling scenarios
in observability platforms. As ShuffleBench primarily fo-
cuses on isolated performance benchmarking of Flink, Kafka
Streams, Spark, and Hazelcast, it lacks support for realis-
tic application contexts, modular extensibility, or network
emulation under multi-platform configurations, limiting its
utility for prototyping end-to-end pipeline deployments
involving diverse event streaming platforms and stream
processing engines.

The existing tools, while insightful, fall short of pro-
viding a holistic solution that tackles the complexities of
end-to-end stream processing pipeline testing, particularly
in ensuring performance, reliability, and scalability under
real-world conditions. An ideal tool should not only sup-
port diverse stream processing platforms and engines but
also enable the emulation of realistic network conditions,
facilitate fault injection for reliability testing, and provide
comprehensive monitoring and debugging capabilities. This
gap in the testing and benchmarking landscape underscores
the need for a more versatile and comprehensive tool like
streamline. Table [1| offers an overall comparative analysis
between streamline and the aforementioned testing method-
ologies.

4 streamline OVERVIEW

This section presents the design goals of streamline, its
architecture, workflow, and configuring API. We conclude
the section with an illustrative example for streamline.
Properties of streamline: streamline offers the follow-
ing features for efficient deployment and assessment of

stream processing pipelines. It is easy to configure, monitor,
and manage, enabling developers to test a prototype within
their computing systems without accessing, configuring,
and using a complex distributed testing platform (e.g.,
Chameleon), i.e., a cost-effective tool. Specifically, they can
use a container-based deployment of streamline without
having in-depth knowledge of low-level distributed system
details (e.g., network addressing, routing, platform interop-
erability).

The modular architecture with developer-friendly API
makes streamline an agile stream processing applications test-
ing playground, where they can choose a combination of
streaming platforms, stream processing engines, and storage
systems within streamline. Furthermore, developers can
integrate additional components of the processing pipeline
as per the demand of applications. streamline simplifies the
evaluation of stream processing applications with diverse
network topologies and operational conditions (e.g., route delays,
link bandwidths, disconnections). It continuously monitors
the entire pipeline, providing developers with real-time
insights to quickly identify and debug issues during testing
and deployment. streamline accurately mimics the oper-
ational behavior and performance characteristics of real-
world stream processing applications, ensuring that the
application code executes identically in comparison with the
testbed and cloud environment.

Challenges: streamline must resolve a number of design
challenges to offer the desired properties. First, it must
offer an efficient and extensible API to provide the necessary
system configuration parameters and performance measure-
ment metrics without knowing the underlying infrastruc-
ture details. Second, it must efficiently utilize computing
resources of the host machine to implement and deploy every
component of the stream processing pipeline. Specifically,
streamline must carefully allocate resources across network
elements, stream processors, and data loggers while meeting
the application performance requirements. Furthermore, en-
suring seamless compatibility and integration among various
stream processing components can be complex, often requir-
ing the development of proxy or wrapper code. Addition-
ally, integrating streamline with existing stream processing
platforms and libraries may necessitate addressing compat-
ibility and interoperability issues. Finally, streamline must
offer a dependable (similar to real deployment) performance
with system performance monitoring and debugging facilities.

4.1

Figure [2| shows streamline’s architecture. The framework
takes a high-level description of the configuration and as-
sessment tasks as input over the developed API. The input
contains: i) a set of stream processors (e.g., Spark/Flink
programs) specified by the application developer and ac-
companied by sample input data; ii) necessary configuration
parameters (e.g., number of message brokers, event topics,
and stream processing engine workers) for setting up the
underlying stream processing platform, including its data
stores, data producers, and message brokers in case these
are present; and iii) a desired network topology to host the
entire stream processing system. This design separates the
application logic from its testing setup, which enables the

Architecture and Workflow

Authorized licensed use limited to: Dalhousie University. Downloaded on September 11,2025 at 03:16:12 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2025.3587641

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, AUGUST 20XX

stream processors. -y

Prod/cons stubs Datastore

Developer

S o BP
! ‘E S Platform [Sq:

configuration R

Event streaming platform, !

: Task N
description el v
Topology [Emulated network J
Sugy :
[eoreg streamline)
o tat,‘o --------------------------

Fig. 2: streamline architecture and workflow. SPE = Stream
Processing Engine.

re-use of testing scenarios by modularly plugging different
stream processors.

streamline instantiates the specified topology using a
network emulator, Mininet [16]. Even though our frame-
work focuses on single computers, it can operate with
minimal modifications on distributed clusters (e.g., using
[32] or [33]) if an extreme scale is needed. Once the network
is set, streamline starts a modular event streaming plat-
form (ESP) for communication among different application
components, which is common in current data processing
pipelines (see Section 2). streamline then initializes the vari-
ous components that the specified application encompasses,
which may include stream processing engines (SPEs), data
stores, producer and consumer stubs, among others.

streamline provides a repository containing standard
producer/consumer stubs that developers can use to
quickly ingest data into or extract data from stream pro-
cessing pipelines according to desired patterns. Also, each
application component runs as an independent process,
which enables them to be balanced and prioritized among
multiple cores in the underlying server to mitigate load
imbalances due to diverse resource demands. streamline
provides several parameters that can be tuned to support
various operational conditions from production environ-
ments, including routing algorithms and failure profiles. It
also facilitates fine-grained parameter tuning to optimize
resource usage while maintaining accuracy compared to
real-world deployments. streamline aims to address inte-
gration challenges by compatibility testing with standard
stream processing platforms and libraries with integration
guidelines.

Finally, it offers a series of monitoring tasks that log
relevant network and application information (e.g., band-
width measurements, timestamped events) and employs a
robust error handling mechanism that gracefully captures
and logs exceptions arising from any component within the
pipeline. Moreover, a visualization module presents a rich
set of statistics to the developer, which includes per-port
throughput, message latency, and event ordering. streamline
incorporates modular ESPs and SPEs for seamless integra-
tion and interchangeability of different ESP and/or SPE
components. Also, streamline supports clustered setups to
test larger-scale and complex deployments.

TABLE 2: streamline attributes.

Graph attributes |

Description

topicCfg
faultCfg

Topic configuration for the event streaming system
Fault configuration (e.g., link down) for reliability tests

Node attributes |

Description

prodType Data source type (used for data ingestion)

prodCfg Data source configuration

consType Data sink type (used for data consumption)
consCfg Data sink configuration

streamProcType | Stream processing engine type (e.g., Spark, Flink, KStream)
streamProcCfg Stream processing engine configuration

storeType Data store type (e.g., MySQL, MongoDB, RocksDB)
storeCfg Data store configuration

brokerType Message broker type (e.g., Kafka, RabbitMQ)
brokerCfg Message broker configuration

cpuPercentage Cap on overall system CPU usage

Link attributes | Description

lat Link latency (in milliseconds)

bw Link bandwidth (in Mbps)

loss Link loss (%)

st Source port

dt Destination port

4.2 Configuration API

The interface builds on GraphML [34] and YAML [35] due to
their agility and offers a unified, platform-agnostic interface.
Table 2|lists the attributes streamline supports, which either
points to a configuration file or developer-specified values.
The integrated event streaming platform moves data among
network nodes based on a publish/subscribe model after
setting a network topology.

Graph Attributes: Developers can establish a collection
of topics, enabling application components to efficiently
publish or subscribe to specific data streams. In this context,
streamline leverages a broker-based messaging (or event
streaming) system for inter-component communication. For
each topic, developers can designate a primary broker and
specify the desired number of replicas. Additionally, siream-
line provides a simplified API for simulating various failure
scenarios, such as link failures.

Node Attributes: Nodes can host a variety of applica-
tion components, e.g., data stores, producers, consumers,
message brokers, and stream processing engines. Each com-
ponent is associated with a configuration file, structured
as a list of key-value pairs, specifying component-specific
parameters.

Link Attributes: streamline allows the configuration of
standard communication channel parameters on links (e.g.,
delay, bandwidth, and packet loss). The packet loss is useful
to construct complex failure scenarios (e.g., gray failuresﬂ)
and testing network congestion. Additionally, developers
can specify the source and destination ports for each link,
enabling precise control over the connection points between
hosts.

4.3 Example

Figure [Ba] shows an example data processing pipeline that
can be prototyped using streamline. This pipeline illustrates
a document analytics application [36] and comprises a data
source, which can read information from a file system or
database, two stream processing jobs, and a data sink. The

3. Hardware malfunction that causes packet losses only for subsets
of packets sent over a link [36].

Authorized licensed use limited to: Dalhousie University. Downloaded on September 11,2025 at 03:16:12 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2025.3587641

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, AUGUST 20XX 6

Data Broker
source topic: raw-data

SPE - Job 1
Document word count

Broker
topic: words-per-doc

SPE - Job 2
Avg document length

Data Broker
sink topic: avg-words-per-topic
Job 1

(@) (b)

Fig. 3: a) Example data processing pipeline; b) Target
pipeline allocation into the testing infrastructure.

Host 1
Data
source

Host 2
Broker SPE SPE

Host 3 Host4 Host5
Data
Job 2 sink

<!-- Graph attributes -->
<graph edgedefault="undirected">
<data key="topicCfg"> topics.cfg </data>

<!-- Node attributes -->
<node id="h1">

<data key="prodType"> SFST </data>

<data key="prodCfg"> data-src.yaml </data>
</node>
10 <node id="h2">
11 <data key="brokerType"> KAFKA </data>
12 <data key="brokerCfg"> broker.yaml </data>
13 </node>
14 <node id="h3">
15 <data key="streamProcType"> SPARK </data>
16 <data key="streamProcCfg"> spe-1.yaml </data>
17 </node>
18 <node id="h4">
19 <data key="streamProcType"> SPARK </data>
20 <data key="streamProcCfg"> spe-2.yaml </data>
21 </node>
22 <node id="h5">
23 <data key="consType"> STANDARD </data>
24 <data key="consCfg"> data-sink.yaml </data>
25 </node>

VCoONOOTUDRWNKH

27 <!-- Link attributes -->

28 <node id="sl1"/>

29 <edge source="s1" target="h1">
30 <data key="st"> 1 </data>

31 <data key="dt"> 1 </data>

32 <data key="bw"> 1000 </data>
33 <data key="lat"> 50 </data>
34 </edge>

55 </graph>

Fig. 4: GraphML description for the data processing pipeline
presented in Figure We omit some lines due to space
constraints.

two stream processing jobs are responsible for counting the
number of distinct words in a document and calculating the
average document length based on their topic, respectively.
The pipeline uses a message broker to stream data between
processing and storage nodes, and each data migration
happens on a different topic (i.e.,, “raw-data” and “avg-
words-per-topic”).

Figure [3b| illustrates the target pipeline allocation into
the tested infrastructure. Each component occupies a sep-
arate server reflecting a common scenario in which service

filePath : test-data.csv
topicName : raw-data
totalMessages : 1000
requestTimeout : 2000ms
bufferMemory : 32m

app : word-count.py
executorMemory : 1g
eventlLog : true

(a) (b)

Fig. 5: Example YAML configurations for the a) data source;
and b) word count components of the data processing
pipeline described in Figure

providers adopt dedicated, i.e., specialized, clusters [37]. We
employ the “one-big-switch” abstraction [38] to model the
network setup within streamline, simplifying the specifica-
tion of the network while retaining essential communication
channel details like delay and bandwidth. This abstraction
transforms the complex network topology into a singular,
large switch connecting all endpoints, focusing on endpoint
connectivity and packet handling rules. The controller trans-
lates high-level policies into forwarding rules for data plane
switch, optimizing rule space and reducing superfluous traf-
fic. This approach simplifies network policy management,
enhancing efficiency and clarity in network setup modeling.

Figure [illustrates how to describe our example data
processing pipeline using streamline’s modeling language
(i.e., GraphML). We start by setting up the configuration of
streamline’s event streaming platform topic (line 3). Next,
we specify the configuration of each pipeline component
(lines 6-25). Note that each host (i.e., node) follows the target
resource allocation previously discussed. Finally, we spec-
ify the networking setup for the communication channels
between hosts in the cluster (lines 28-55). We use separate
YAML files to specify the configuration of each application
component. Figures [5a] and [5b] show two examples, which
depict the configuration of the data source (or producer) and
the word counting job of our example pipeline, respectively.

5 IMPLEMENTATION AND EVALUATION SETUP

Implementation: sfreamline features two event streaming
platforms: Apache Kafka 4.0.0 [2] and RabbitMQ 4.1.0 ({MQ)
[39]. Similarly, we choose Apache Spark 3.5.5 [3] and Apache
Flink 2.0.0 [4] as representative stream processing engines.
Although rMQ is traditionally used for message queuing,
we leverage its Streams plugin (introduced in version 3.9+)
to enable stream processing and non-destructive message
consumption capabilitieeﬂ While Apache Kafka, Spark and
Flink are widely adopted for high-throughput stream ana-
lytics, rMQ is better suited for event-driven applications re-
quiring reliable and ordered message delivery (e.g., tactical
coordination) [40]. These platforms and engines are chosen
due to their extensive documentation and broad adoption
in academia and industry [41], reflecting their relevance
in modern stream processing practices. Owing to modular
design of streamline, developers can extend the framework
by integrating new stream processing technologies with
minimal effort, following the supplementary documentation
provided in the open-source project repository [17].

4. https:/ /www.rabbitmq.com/docs/streams

Authorized licensed use limited to: Dalhousie University. Downloaded on September 11,2025 at 03:16:12 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2025.3587641

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, AUGUST 20XX 7

streamline enables communications among pipeline
components over Mininet 2.3.0 [16], a popular network
emulator chosen for its flexibility, ease of use, and ability
to accurately model various network topologies and condi-
tions (e.g., different latency, bandwidth, and packet loss). A

software-define controller communicates over OpenFlowE]

1.3 to monitor, configure, and manage network elements,
including a lightweight switch control daemon (based on
ovs-ofctl). We leverage this switch to minimize control
plane overhead. OpenFlow statistics monitor network per-
formance indicators such as bandwidth consumption and
packet loss rates. Additionally, we employ the Python log-
ging facilityﬁ to capture essential application events, in-
cluding message timestamps (arrival and departure) and
processing duration.

The implementation of streamline framework [17] com-
prising approximately 5,800 lines of Shell and Python code,
utilizes Networkx 2.5.1 for parsing GraphML topology spec-
ifications and Matplotlib 3.3.4 for generating informative
data visualizations. MySQL 8.0.30 is currently supported as
an exemplary external data store component.

Evaluation Setup: We evaluate our experiments in three
environments: streamline, hardware testbed, and cloud en-
vironment. For streamline (i.e., emulation results), we utilize
a machine equipped with an Intel® Core i7-3770 CPU @
3.40GHz, 16GB RAM, and 2TB of storage, running Ubuntu
22.04.3 LTS with kernel version 5.15.0-79-generic. Testbed
deployment consists of a 4-node cluster with two 10-core
Intel Xeon Silver 4210R at 2.40 GHz with 32 GB of memory
and two 8-core Intel Core i7-9700 at 3.00 GHz with 16 GB
of memory servers. The Xeon servers are equipped with
a 25 Gbps Mellanox BlueField SmartNIC and run Ubuntu
20.04.1 LTS, while the Core i7 servers have a 40 Gbps
Netronome Agilio LX SmartNIC and run Ubuntu 18.04.6
LTS. All servers have hyper-threading disabled and are
connected to an Edgecore Wedge 100BF-32X switch with
Intel Tofino ASIC. We leverage OpenStack [42] as the cloud
environment due to its wide adoption, modular architec-
ture, and extensive API support. The cloud consists of four
virtual machines, each equipped with 8 virtual CPUs based
on the Intel Xeon E312xx clocked at 2.00 GHz with 32 GB
memory. All virtual machines run Ubuntu 20.04.1 LTS with
hyper-threading disabled while communicating through a
virtual switch.

6 USE CASES OF streamline

This section demonstrates streamline ’s capabilities and
applicability to real-world stream processing deployments
through three sets of evaluations. In Section we as-
sess streamline ’s ability to prototype a wide range of
stream processing applications, illustrating its support for
diverse workloads, deployment patterns, and integration
configurations. In Section we evaluate how streamline
can emulate varied network conditions, such as fluctuating
link delays and constrained bandwidth, and analyze their
impact on end-to-end performance metrics. In Section

5. https:/ /opennetworking.org/wp-content/uploads /2014 /10/
openflow-spec-v1.3.0.pdf
6. https:/ /docs.python.org/3/library/logging.html

TABLE 3: Example applications deployed on streamline and
the framework capabilities tested.

Application Application Ch: istics #Comp Tested
Word count Multiple stream processing jobs 5 Real-time stream processing
Monitoring & logging
Ride selection Structured data processing 5 Real-time stream processing

Stateful processing
Unstructured data processing
External persistent storage

Sentiment analysis
Maritime monitoring

Real-fime stream processing
Data store integration
Topology configuration

Fraud detection Machine learning prediction 5 Fault injection
Monitoring & logging
Military coordination Data replication 4 Fault injection
Parameter tuning Benchmarking support
Network emulation
Video analysis Concurrent consumption 3 Scalability testing
Monitoring & logging
Network traffic monitoring Windowed aggregation [} Cluster deployment

Fault injection
Reproducibility

we demonstrate sfreamline 's capability to test system re-
liability by injecting network- and platform-level faults,
and analyzing their effects on message loss, latency, and
recovery across both event streaming platforms and stream
processing engines. Together, these evaluations highlight
how streamline serves not only as a dependable platform for
reproducing expected behaviors under controlled setups,
but also as a powerful tool for uncovering non-trivial system
behaviors under fault and stress scenarios.

6.1 Prototyping Stream Processing Applications

We implement and evaluate a range of stream processing
applications using streamline to showcase its versatility
across different processing needs and deployment settings.
Table |3] summarizes these applications along with their
characteristics and the specific streamline capabilities tested,
such as real-time processing, fault injection, benchmarking,
and cluster deployment. The number of components indi-
cates how many modules (e.g., stream processors, message
brokers, key-value stores) an application contains. More
details on each application, including platform configura-
tions and deployment topologies, are available in the public
streamline repository [17].

Word count serves as a standard benchmark applica-
tion for evaluating stream processing systems [3]. It collects
textual data from a stream of files, splits it into words, and
calculates the frequency of each word, eventually storing the
results in a separate file. We implement the core logic into
two distinct stream processing jobs: one for text splitting
and another for frequency counting.

Ride selection application leverages structured data
from a stream of taxi ride information, including geograph-
ical coordinates and fare values, to identify the best tipping
areas in New York City. It utilizes the NYC Taxi dataset
and Geo]JSON data representing Manhattan neighborhoods
to perform complex queries involving joins, groupby, and
window operators. The implementation involves handling
intermediate states efficiently to process these complex
queries on streaming data.

Sentiment analysis computes the subjectivity and
polarity, two common natural language processing (NLP)
tasks, of each message in a Tweet stream. We employ the
Python TextBloHZ] library to evaluate the subjectivity and
polarity of tweets, focusing on their emotional and subjec-
tive content. The process involves collecting Twitter data on

7. https:/ /textblob.readthedocs.io/en/dev/

Authorized licensed use limited to: Dalhousie University. Downloaded on September 11,2025 at 03:16:12 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

https://opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.3.0.pdf
https://opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.3.0.pdf
https://docs.python.org/3/library/logging.html

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2025.3587641

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, AUGUST 20XX 8

specific topics, followed by essential data cleaning to ensure
quality input for analysis.

Fraud detection employs machine learning (specifi-
cally, an SVM algorithm) to detect anomalies and potential
fraud in a stream of financial transactions. It encompasses
the key stages of a machine learning workflow, including
data preprocessing, feature extraction, model training, and
evaluation, all organized within a data processing pipeline.
The pipeline integrates a series of transformers and estima-
tors to facilitate the seamless execution of these stages.

Maritime monitoring analyzes a stream of ship
tracking reports (e.g., AIS messages) to count the number
of ships heading to a set of desired ports in a given time
window. The data processing pipeline uses an external key-
value store, i.e., in addition to the one embedded in the
stream processing engine, to store the results.

Military coordination simulates a common mili-
tary network setup where multiple tactical teams need to
stay operational by sharing and accessing critical data. It
involves message brokers interconnected in a predefined
topology, replicating messages produced into topics. Our
implementation focuses on performance optimization by
conducting a grid search across Apache Kafka’s extensive
parameter space to identify the ideal configuration for a
military scenario.

Network traffic monitoring to evaluate the scala-
bility of a stream processing-based traffic monitoring system
for enterprise networks [43]. It takes a stream of network
packets captured at different switches as input and com-
putes key metrics like the number of active connections and
bandwidth usage on a windowed basis. The system utilizes
an event streaming platform to collect mirrored packets and
a stream processing engine to calculate the desired metrics.

Video analysis application evaluates the perfor-
mance of a stream processing framework for analyzing
video traffic. It simulates a video streaming scenario and
scales the number of consumers to assess the impact on
system performance. The application utilizes streamline’s
publish-subscribe messaging and scalability features to ef-
ficiently distribute and process the video stream data.

6.2 Emulating Networking Conditions

Cloud organizations have increasingly deployed geograph-
ically distributed services to reduce wide area network
(WAN) traffic originating from data transmissions and min-
imize query response times. For example, many cloud
providers use edge servers to partially aggregate data
streams from multiple user (or IoT) devices before sending
them to a data center for analytics [44]. The large variability
of WAN bandwidth and latency though (up to 20x in
production environments [45]) can directly affect the cor-
rectness and performance of stream processing applications,
making it imperative for developers to fully understand
the application’s behavior under varying networking con-
ditions.

Unfortunately, running a stream processing system in
a real geo-distributed setup is challenging. It may require
provisioning resources on several (edge) data centers and
carefully crafting (or observing) desired running conditions,
e.g., high-link delays and varying bandwidth. Furthermore,

1 =—&— Producer link
Broker link

—#— SPE link

{ == Consumer link

o
=)

»
8]

=
n

End-to-end latency (s)
w
o

It
=)

25 50 75 100 125 150
Link delay (ms)

Fig. 6: End-to-end latency for the word count application
when varying the link delay to reach out to each of its
components. At each run, we increase the link delay of a
single component and keep the remaining ones at a very
low value (< 10 ms).

isolating the application’s response to relevant events, e.g., a
processing stall, from co-located services such as a co-hosted
virtual machine may not be possible. streamline offers a
simplified alternative to test geo-distributed environments.
In the following, we present two scenarios for testing link
delay and bandwidth (the most common metrics) over geo-
distributed stream processing applications.

Varying Link Delay: We conduct delay assessment over
the application while systematically varying
link delays. Specifically, we increase the link delay for com-
municating with a chosen host while keeping the delay for
the remaining ones at a very low value (< 10 ms).

Figure [6| shows the end-to-end latency for processing
a data unit (i.e., a text file) throughout the word count
pipeline. Each point depicts the average latency of over
100 files. As expected, higher link delays impact the perfor-
mance of all application components. Interestingly, the im-
pact is more prominent when the data broker and the stream
processing engine (e.g., Apache Spark) delays increase, up
to 6x worse for a link delay of 150 ms. This highlights
the fact that application components in a data processing
pipeline may have distinct networking requirements and
calls for a careful allocation of infrastructure resources. In
particular, the data broker constantly communicates with all
other components in our experiment and, therefore, is more
susceptible to poor networking conditions.

Varying Link Bandwidth: We conduct the experiment
over the[Military coordination|application, where 10
coordinating sites (i.e. hosts) are distributed over various
locations (Figure [7a). There are 10 message brokers form
a star topology and deal with 2 topics. Each host also
runs: i) a data producer that randomly injects data into the
topics; and ii) a consumer that collects data from the topics.
This deployment scenario is inspired by standard streaming
deployments [46], [47]. We systematically vary the available
bandwidth for all brokers from 20 to 400 Mbps (following
[45]), and for each bandwidth setting, we incrementally
increase the message rate until the system’s throughput
reaches its limit.

Figure [7b| illustrates the interplay between link band-
width, message rate, and the resulting aggregated through-
put. The plot shows that as link bandwidth increases, the

Authorized licensed use limited to: Dalhousie University. Downloaded on September 11,2025 at 03:16:12 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2025.3587641

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, AUGUST 20XX 9
~ 1.0
)
S]
i
5 2 0.81 /,r"_
& ; g
Z - /
! o n 0.6 /
: H n y
Host 10) o
k ° o 0.44 /
E © / —e— 100 bytes
Cons § 3 0.2 Y 300 bytes
ES [// -#- 500 bytes
2 = , : : : : ‘
0 50 100 150 200 250 300

(a)

(b)

Fig. 7: a) Evaluation setup for military coordination appli-
cation; b) Aggregated throughput with varying link band-
width under different message rates.

aggregated throughput also increases, especially at higher
message rates. At the highest message rate of 1000 messages
per second, the aggregated throughput increases sharply
from around 10 Mbps to approximately 70 Mbps as the link
bandwidth is increased from 100 Mbps to 400 Mbps. This
demonstrates that a 4x increase in bandwidth leads to a 7x
increase in aggregated throughput at high message rates,
emphasizing how bandwidth and message rate together
critically impact performance. The key takeaway is that
bandwidth alone does not dictate throughput; the message
rate also plays a crucial role. When the message rate is low,
the system easily handles the traffic and additional band-
width yields marginal benefits. In contrast, at higher rates,
throughput scales non-linearly with bandwidth, revealing
a saturation effect that emerges only under increased load.
This controlled behavior establishes streamline ’s accuracy
under stress, which we build upon in Section to explore
less predictable behaviors under fault scenarios.

6.3 Testing Reliability

Network reliability is pivotal in distributed stream process-
ing applications, particularly due to the inherent complex-
ities and dynamic nature of distributed networks. Recent
studies underscore the critical role of network quality in
maintaining the efficiency and reliability of stream pro-
cessing systems [48]. Alongside, production networks can
experience network partitions as frequently as once a week,
with repairs potentially taking hours [49]. Despite software
and data redundancy being widespread on current stream
processing systems, many of them still experience silent
catastrophic failures when a network partition happens [50].
Reproducing, diagnosing, and hardening stream processing
systems against such failures can be rather complicated due
to the lack of proper tools. streamline fills this gap by allow-
ing quickly and flexibly inject network-partitioning failures
(e.g., after bringing network links down) into distributed
stream processing systems.

To evaluate the reliability assessment capabilities of
streamline, we conduct three sets of experiments. First,
we examine how streamline can inject network faults and
measure their impact on end-to-end data delivery. Second,

Network delay (ms)

Fig. 8: Message loss rate vs. network delay for varying
message sizes in military coordination application.

we evaluate how it enables assessment of the fault tolerance
behavior of event streaming platforms under failure scenar-
ios like leader broker disconnection and high network delay.
Third, we investigate streamline ’s ability to assess stream
processing engines (e.g., Apache Flink, Apache Spark) un-
der worker node failures and their subsequent recovery.

Network Fault Injection: To evaluate the impact of
network-induced faults on data delivery, we use the
[Military coordination|application, where we emulate
high network delays to simulate fault conditions. In this
application, Kafka instances operate under at-most-once
semantics, where messages are delivered no more than
once, thereby reducing the potential for message duplica-
tion but increasing the risk of message loss in the case of
network faults. This approach prioritizes avoiding message
duplication at the cost of potential data loss. The producer
generates a total of 350,000 messages. Also, it is set for
zero acknowledgments to enforce at-most-once semantics,
i.e., it does not wait for any confirmation from the server,
enhancing the transmission speed but at the risk of message
loss. We vary network delays from 1 ms to 300 ms prior to
message transmission and maintain these conditions until
all messages are sent.

Figure 8| shows the impact of network delay on message
loss rates for different message sizes, where each point
represents the average message loss rate at specific delays
ranging from 0 to 300 ms for each message size. It high-
lights that larger messages experience significantly higher
loss rates under increased delays, reaching up to 80% at
300 ms, compared to smaller messages, which show better
resilience. This trend indicates that larger messages are more
prone to buffer overflows and timeouts under high-delay
conditions, emphasizing the need for optimizing message
sizes and buffering strategies to maintain data reliability in
latency-sensitive environments.

Event Streaming Platform Fault Tolerance: Here, we
assess how event streaming platforms tolerate failures by
injecting a broker disconnection fault and analyzing mes-

sage delivery behavior in Apache Kafka. In the
application, we randomly disconnect the

node hosting the leader broker for one of the two topics
for 120 seconds (approximately 20% of the total experiment
duration). Figure 9a| shows the data delivery matrix for the
producer that is co-located with the disconnected broker.

Authorized licensed use limited to: Dalhousie University. Downloaded on September 11,2025 at 03:16:12 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2025.3587641

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, AUGUST 20XX 10

Each light color cell indicates whether a given consumer
received a message. We observe no message loss during
the disconnection period, even from the topic whose leader
is temporarily unreachable. This behavior demonstrates the
in-built fault resilience and consistency guarantees in Kafka.
Specifically, Kafka’s adoption of the KRaft mode in the
recent versions and the new “Pre-Vote” mechanism [51]
that helps reduce unnecessary leader elections by allowing
nodes to assess their leadership viability before triggering
the election process. This preemptive check significantly
mitigates disruption during transient failures or network
partitions, ensuring smoother recovery and more reliable
message delivery.

We also measure the impact of network partitioning on
message latency, i.e., the time for a published message to be
available at a subscriber using streamline. Figure 9b| shows
the message latency at a random consumer (all consumers
present a similar behavior). We classify messages according
to their topic and order them based on their receiving time
(older messages first). As we can observe, there are two la-
tency spikes throughout the experiment, each affecting one
of the topics. In both cases, the increased latency stems from
the message commit process. For topic A (TA), whose leader
got disconnected, all produced messages are put on hold
until a new leader is elected, which then resumes accepting
and delivering messages in place of the disconnected broker.
Topic B (TB), on the other hand, only delays messages
from the disconnected producer since the leader broker is
available at all times. In this case, the disconnected producer
tries to re-send messages until they are either accepted or a
timeout occurs, and excessively long timeouts may incur on
latency inflation.

We can also see the impact of network failures on the
required bandwidth. In particular, Figure shows the
sending throughput of relevant hosts over time. After the
disconnection (D), the TA leader stops serving requests
and a replica broker assumes its role. We then observe two
spikes on the required bandwidth: the first (2)) comprises
the new leader acknowledging and committing the backlog
of messages that were produced during its election process
while the second (@) involves serving the same backlog to
the subscribed consumers. When the old leader reconnects,
it eventually re-assumes topic A leadership (@) due to
Kafka's preferred replica election mechanism.

Stream Processing Engine Recovery: We evaluate
stream processing engines resilience under compute node
failures. We incorporate controlled worker disconnection
fault test in [Network traffic monitoring|application
to enhance the reliability assessment of stream processing
engines. This application involves selection, group-by, and
windowed processing operations, and is configured to en-
sure at-least-once processing semantics. In this experiment,
we simulate a worker node failure by disconnecting a single
worker node from the cluster for a duration of 120 seconds.
This approach aligns with chaos engineering principles
[52], introducing deliberate disruptions to assess system
resilience. After the two-minute interval, the worker node
reconnects to the cluster. We perform these experiments
on both Apache Flink and Spark frameworks. For Flink,
we utilize its asynchronous barrier snapshotting mechanism
for checkpointing, which allows the system to capture con-

sistent snapshots of the application state without halting
the data processing. For Spark, we enable checkpointing to
persist the state of streaming computations, facilitating re-
covery in the event of failures. Throughout the experiments,
we monitor key performance metrics, including throughput,
latency, and recovery time. Throughput is measured as the
number of records processed per second, latency as the
time taken to process each record, and recovery time as the
duration from the detection of the worker node failure to the
point when the system resumed normal processing rates.

The results of fault injection experiments depicted in
Figure [10| reveal distinct recovery behaviors between Flink
and Spark. Following the two-minute disconnection, both
frameworks encounter transient throughput drops and la-
tency spikes. Flink promptly resumed stable operation,
with throughput recovering in under 2 minutes and la-
tency returning to baseline shortly thereafter. This rapid
recovery can be attributed to Flink’s fine-grained event-
level checkpointing and backpressure mechanisms, which
enable smooth state replay and minimize output disruption.
Notably, no signs of message loss or duplication is observed,
and the quick clearance of consumer lag further confirms the
effectiveness of Flink’s recovery process.

In contrast, Spark exhibits a more gradual recovery
trajectory, with throughput stabilizing approximately three
minutes after the worker rejoins. Although no record loss
or duplication is detected, the recovery latency remained
elevated for a longer duration. This is consistent with
Spark’s micro-batch-based execution and checkpointing
model, where state recovery is triggered at batch bound-
aries. While this model ensures deterministic recovery, it
introduces moderate delay and batch-level backpressure,
resulting in a slower yet smoother recovery process. These
observations underscore Flink’s superior fault tolerance and
recovery efficiency in handling transient worker failures,
aligning with findings from recent studies on stream pro-
cessing fault recovery performance [53].

7 PERFORMANCE EVALUATION OF streamline

This section presents the performance of streamline by
answering four questions: i) how accurate the framework
is compared to testbed, virtualized cloud environment and
state-of-the-art solution (Section[7.I)); ii) how much resources
it requires for running reasonably large experiments (Sec-
tion [7.2); iii) how easy it is to deploy a cluster of workers
in streamline and compare the results with a similar de-
ployment (Section [7.3); and iv) how the framework can be
used to benchmark different stream processing platforms

(Section[7.4).

7.1 Dependable Accuracy

This evaluation aims to demonstrate the dependability of
streamline as an alternative to hardware platforms. We also
compare its performance against the OpenStack cloud setup.
The chosen applications are [Word count|and Military|
as the former is a standard streaming
application for performance assessment, and the latter is a
complex one with intermittent network conditions.

Authorized licensed use limited to: Dalhousie University. Downloaded on September 11,2025 at 03:16:12 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2025.3587641

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, AUGUST 20XX 11
300 ~30
101 A TA 3 —— TA leader @\
240 e B 2 25| --- TBleader)
a s N 0 ~50] 7" TA replica i
~ -
] 180] b
£ & E 35 Q I
2 9 120 2 I
2 4 © o0 ’ I
S " £ T i lj
. L LT RN
A fal 0 et e S e
0 25K 5K 75K 10K %% 30K 60K 90K 120K 0 150) 300 450
Message ID Message order Time (s)
(a) (b) (c)

Fig. 9: a) Message delivery matrix for the co-located producer with a disconnected broker. Y = Message delivered. N =
Message not delivered; b) Message latency at a consumer. TA/TB = Topic A/B; ¢) Sending throughput of designated hosts.
Events of interest: () = TA leader disconnection. 2) = New leader election. Q) = Message backlog serving. @ = Original
leadership re-establishment. All results are for the military coordination application.

- 1400
% 140k
8 200
B 120 1
2 100k g 1000
g)
T 8ok > 800
%)
5
2 60k £ 600
< b+
]
g’ 40k W & 400
(4
E 20k 200
0 0

50 7.5 100 125 15.0
Time (minutes) Time (minutes)

(@) (b)

Fig. 10: Stream processing engine fault recovery under a
two-minute worker disconnection in the network traffic
analysis application. (a) Throughput (records/s) and (b)
latency (ms) over time for Flink and Spark. Annotations
indicate failure injection, end of failure, and recovery points.

We use Network Time Protocol (NTP) servelﬁ to synchro-
nize clocks. Moreover, all measurements are collected after
a 60-second warm-up interval to initialize every application
component and configure the network routes. We use Linux
traffic control utility, t<ﬂ to configure the link properties in
the hardware setup. By modifying the queuing disciplines
(qdiscs) of the network interface, tc can configure link
properties for both inbound and outbound traffic. Qdiscs
are elements that help in queuing and scheduling traffic
transmission by a network interface.

The application takes advantage of both
event streaming (Apache Kafka) and a streaming processing
engine (Apache Spark). Then, we inject a stream of data
(i.e., text files) into its processing pipeline as quickly as pos-
sible. The Military coordination|application utilizes
Apache Kafka for event streaming as part of the pipeline,
where each producer consistently generates data (usually
position reports) at 30 Kbps, replicating the behaviors of
entities like soldiers in a tactical unit. Also, the producer
and consumer co-locate with the broker in the same node.

Figure illustrates the end-to-end latency for both
applications under varying link delays across different
pipeline components. The results demonstrate a consis-
tent pattern across all environments, validating streamline’s
accuracy in replicating real-world scenarios. Notably, the

8. https:/ /www.pool.ntp.org/zone/ca
9. https://man7.org/linux/man-pages/man8/tc.8.html

cloud environment consistently exhibits higher latency com-
pared to both streamline and the hardware setup. This
overhead, ranging from 15-33%, is likely attributed to the
inherent characteristics of cloud environments, such as net-
work virtualization and resource sharing, which introduce
additional layers of abstraction and potential contention for
resources [54]. Based on this finding, it is recommended
that for applications where precise latency measurements
are crucial, and network overhead is a concern, a hard-
ware testbed or streamline should be the preferred test-
ing environment. However, a cloud-based environment like
OpenStack is suitable if scalability is prioritized over precise
latency control.

To further assess streamline’s accuracy in comparable
realistic deployments, we conduct two additional experi-
ments. First, we compare its performance against NAMHET]
[13], a state-of-the-art prototype generator framework for
distributed stream processing systems. To evaluate the han-
dling of bursty traffic and backpressure behavior, we con-
figure both NAMB and streamline with identical pipeline
that combined Kafka and Flink under acknowledgment-
enabled conditions. In this setup, a producer issues tuples
at a constant rate with periodic burst phases to simulate
high-load scenarios. Kafka acts as the message broker and
Flink processes the tuples using a stateless job. In NAMB,
bursts are generated via a synthetic load generator with
busy-wait loops, whereas streamline utilizes realistic mes-
sage injection and rate control via Mininet-configured links.
A burst in this context refers to a temporary increase in
message arrival rate (e.g., 2x-3x the nominal rate), triggering
flow control mechanisms in the pipeline. As shown in Fig-
ure 12} both frameworks maintain stable throughput under
regular load. However, during burst periods, streamline
consistently achieves higher throughput. This improvement
is attributed to streamline 's resource isolation model, which
reduces coordination overhead during peak loads.

Second, to approximate typical datacenter setups, we
use our existing hardware testbed as a practical alternative,
since we do not have access to a dedicated datacenter
infrastructure. We adjust network parameters to reflect key

10. Despite our efforts, we could not compare streamline against
TRAK [12], another state-of-the-art solution, due to the lack of artifact
availability as well as dependency on outdated versions of Kafka and
Docker.

Authorized licensed use limited to: Dalhousie University. Downloaded on September 11,2025 at 03:16:12 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2025.3587641

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, AUGUST 20XX 12

©
©

—4— streamline
- ®- Hardware
-®- Cloud a

—&— streamline
- @ Hardware
- @+ Cloud

o
o

End-to-end latency (s)

End-to-end latency (s)

25 50 75 100 125 150 25 50 75 100 125 150
Link delay (ms) Link delay (ms)

@) (b)

Fig. 11: Comparison among streamline, hardware testbed,
and OpenStack while varying a) stream processing engine
link delay for word count application and b) event stream-
ing link delay for military coordination application.

=
N
o

110+

1004

©
o

—— NAMB
streamline
Burst Phase

(o)
o

Throughput (tuples/ms)

0 200 400 600 800

Running time (s)

Fig. 12: Throughput comparison between streamline and
NAMB during backpressure test with reliability mechanism
enabled. Shaded regions represent burst phases.

datacenter characteristics by configuring latencies in the
range of hundreds of microseconds [55] and ensuring no
artificial faults are introduced. We then replicate these ap-
plication setups within streamline using similar low-latency
network configurations and no fault injections. Our results
demonstrate that streamline’s performance closely matches
the mimicked data center behavior, with less than 10%
deviation in end-to-end latency under comparable condi-
tions. This result aligns with our earlier result (Figure
and indicates that streamline effectively models real-world
datacenter environments for performance assessment.

7.2 Resource Usage

This section presents the resource usage of streamline
for the Military coordination| application (uses the
largest number of nodes in the pipeline). Specifically, we
measure the CPU and memory utilization by snapshotting
/proc/stat/ and /proc/meminfo/, respectively, every
500 milliseconds. All measurements are collected after a 60
seconds warm-up interval.

Figure shows the cumulative distribution function
(CDF) of the CPU utilization for different numbers of coor-
dinating sites. Our analysis shows that the CPU utilization is
reasonably low (less than 60%) most of the time (more than
90%), even when we have 10 coordinating sites. Each site
hosts a message broker, a data producer and a consumer. In
particular, most of the CPU demand stems from the system
setup when streamline needs to initialize all application

components. We also investigate how quickly the CPU
utilization grows as we increase the number of sites. In
Figure we plot the median CPU utilization for up to
10 sites. As we can observe, streamline scales to tens of
application components (each coordinating site has three
components) with a minimal 7% increase in CPU usage.
Moreover, the overall CPU demand is low (around 10%)
even for the largest scenario.

Figure shows the peak memory usage of streamline
for different numbers of coordinating sites. We also consider
two buffer sizes at data producers (16 and 32 MB) to
assess the impact of application component configurations
on the overall platform resource consumption. This buffer
size reflects the amount of memory a producer reserves for
queuing messages that are waiting to be sent to a broker
(e.g., if the producer is sending messages faster than the
broker can handle). We can see that the required memory
grows linearly as the number of coordinating sites increases,
yet the overall increment is low (less than 25% in total
in our experiment). Moreover, the buffer size has a non-
negligible impact on streamline’s memory consumption (as
much as 16% in our test), which indicates the framework
can be further optimized to accommodate bigger setups
depending on how flexible it is to configure an applica-
tion component. Likewise, we envision our framework can
be used as a playground for automatically tuning stream
processing system parameters [56]. We leave exploring both
directions for future work. Finally, as streamline aims to pro-
vide a generalized framework for deploying and evaluating
stream processing applications under realistic performance
and resilience constraints, its CPU and memory usage is
our primary focus without considering its cost. However,
we plan to explore this cost assessment of streamline in
supported applications and deployment scenarios.

7.3 Support for Cluster Deployment

This section demonstrates streamline’s support for assess-
ing applications in a cluster setup required in some ap-
plications for scalability and fault tolerance [53]. sfream-
line supports clustering on a single node in standalone
mode, i.e., independent of external resource managers like
Apache Mesos or Hadoop YARN. We implement
[traffic monitoring| application in this cluster setup
and assess how the system scales as the number of Spark
workers and network users increases. Each user generates
traffic to a pre-defined set of services (e.g., FTP, Web, DNS)
following a Poisson process. This configuration requires
less than 100 lines of additional code (beyond the core
application logic) in GraphML and YAML formats (example
cluster configuration in Figure [14a).

Figure conveys two messages: streamline’s ability
to reproduce prior research work and the performance
benefits of cluster deployment. We successfully reproduced
results from Ocampo et al. [43], indicating the research work
reproducibility feature of streamline. Specifically, in a sin-
gle worker scenario, the performance of sireamline closely
matches the reported results, even under varying concurrent
user loads, except with 20% variations only at very high user
counts (e.g., 100 concurrent users). The performance trend
is similar with two and three Spark workers. Moreover,

Authorized licensed use limited to: Dalhousie University. Downloaded on September 11,2025 at 03:16:12 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2025.3587641

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, AUGUST 20XX 13

1.0

0.8

0.6

CDF

— 2 sites
4 sites
—— 6 sites
— 8 sites
—— 10 sites

0.4

0.2

0.0

0 20 40 60 80 100
CPU utilization(%)

(@)

15

©
=}

. 16 MB

12 = 32 MB

o
=}

N
o

Median CPU usage (%)
Peak memory usage (%)
B
o

o

8 10

2 4 6 8 10 2 4 6
of coordinating sites

of coordinating sites

(b) (©

Fig. 13: a) CDF and b) median CPU utilization as we vary the
number of coordinating sites, for the military coordination
application described in Figure c) Peak memory usage
for the same scenario considering different buffer sizes on
data producers.

streamline Ocampo
—=— 1 worker --¥-- 1 worker
—=— 2 workers --¥-- 2 workers
3 workers --v-- 3 workers
-
-
X2.0 -7
[}
- £
app: network-traffic-monitoring.py 4= 1.5
cluster: True g
nSPEWorkerInstances: 3 I
nWorkerCores: 4 B l0
workerMemory: 16g 2
®os
£
P
o
Z 20 40 60 80 100
(a) Concurrent users

Fig. 14: (a) Clustering YAML configurations in streamline;
and (b) Comparison of normalized runtimes: streamline vs.
Ocampo et al. for network traffic monitoring application in
one to three workers setup with increasing concurrent users.

due to the additional computing resources and workers, we
can now support more concurrent users within a certain
time, highlighting the importance of cluster deployment in
enhancing scale and speed.

7.4 Benchmarking Stream Processing Platforms
This evaluation again leverages the

applicatiorﬂ to benchmark the
performance of Apache Kafka and RabbitMQ (rMQ)
as representative event streaming platforms. We choose
these platforms as both Kafka and rMQ offer robust
data access through extensive history logs, ensuring
data remains available even after disconnections. Kafka’s
polling mechanism provides immediate feedback on
connection status, although it may introduce some latency
and additional network traffic. tMQ excels in complex
messaging scenarios with flexible routing and delivery
options, but this can impact its overall throughput.

We consider a cluster-based architecture where each
tactical team operates a message broker, producer, and con-
sumer. Log replication across all cluster nodes guarantees
continued operation in case of tactical team disconnection.
In essence, each broker must (i) sustain message forwarding
within a team during disconnection and (ii) automatically
synchronize intra-team messages with other units upon
reconnection. We measure the total throughput (bandwidth
demand) and the message latency. In our setup, each pro-
ducer continuously generates data at 30 Kbps, simulating
real-world entities within a tactical team. Data collection
begins after a 60-second warm-up period to allow the
system to stabilize. We adjust link delays between 1 and
500 ms in the latency experiment, reflecting representative
network deployment. Furthermore, we modify both Kafka
and rMQ connection timeouts to function correctly under
these conditions.

Figure illustrates the bandwidth demand for Kafka
and RabbitMQ across varied cluster sizes. Notably, tMQ’s
bandwidth requirement surpasses that of Kafka by approx-
imately 13x in a 10-node topology. This difference stems
from Kafka’s message compression and rMQ’s sequential
delivery (preventing batching), which leads to more over-
head. Additionally, our study shows Kafka’s bandwidth
usage grows faster than linear growth when scaling from 10
to 20 nodes due to increased overhead from coordination,
replication, and network traffic in larger clusters.

Figure displays the cumulative distribution function
(CDF) of message latency in Kafka and rMQ under dif-
ferent link delays. Overall, latency increases considerably
(over 300% and 85% at the median for Kafka and rMQ,
respectively) in a highly constrained network compared to
a baseline scenario with negligible link delay. Furthermore,
rMQ consistently underperforms Kafka. This is mainly due
to two factors: (i) AMQP|E| connections necessitate multi-
ple RTTs before message forwarding can begin, and (ii)
rMQ brokers must await consumer acknowledgments be-
fore sending subsequent messages.

8 CONCLUSION

streamline stands out as a holistic approach for the prototyp-
ing and testing stream processing applications, effectively

11. While we utilize the Military Coordination application for bench-
marking the performance of Apache Kafka and RabbitMQ, streamline’s
modular design allows researchers to easily integrate and utilize other
applications for benchmarking additional streaming platforms.

12. Advanced Message Queuing Protocol (AMQP) is the backbone
application layer protocol used by rMQ.

Authorized licensed use limited to: Dalhousie University. Downloaded on September 11,2025 at 03:16:12 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2025.3587641

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, AUGUST 20XX 14
L — 1.00 K [10] L. Peterson, A. Bavier, M. E. Fiuczynski, and S. Muir, “Experiences
S ol Kafka-20-n0des | A< ’,' s building planetlab,” in Proc. of the USENIX OSDI Symp., 2006.
53 -+ IMQ-10-nodes :\r’ e 0.75 s [11] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. New-
z g 60 ! w it bold, M. Hibler, C. Barb, and A. Joglekar, “An integrated exper-
£% . ! g ose e ot imental environment for distributed systems and networks,” in
iz :' ' os i Kafka-500ms Proc. of the USENIX OSDI Symp., 2002.
£ 2 s i ’ - == rMQ-1ms [12] H. Wu, Z. Shang, and K. Wolter, “Trak: A testing tool for studying
[. U N N 000 * ™MQ-500ms the reliability of data delivery in apache kafka,” in IEEE ISSREW,
0 100 . 200 300 400 o 50 100 150 200 2019.
Time (s) Latency (s) [13] A. Pagliari, F. Huet, and G. Urvoy-Keller, “Namb: A quick and

(@)

(b)

Fig. 15: (a) Total bandwidth demand from both Kafka and
rMQ for different cluster sizes; and (b) Cumulative distribu-
tion function (CDF) of the message latency from both Kafka
and rMQ for different link delays.

addressing the complex challenges within real-time data
analytics. Using a developer-friendly AP]I, it enables seam-
less setup of network and stream processing configurations.
We have demonstrated that streamline is dependable and
efficient by deploying and assessing a number of popu-
lar streaming applications. Furthermore, its performance is
comparable to a hardware testbed with efficient resource
usage, utilizing less than 10% of server CPU resources
even when testing complex component networks. These
benefits, achieved using accessible computing resources,
make streamline a cost-effective tool. Overall, streamline is
pioneering automated end-to-end testing and configuration
of stream processing systems, promoting innovation and
enhancing system performance and reliability in distributed
stream processing environments. As part of future work, we
will extend the cluster deployment capability of streamline
with external resource managers (e.g., Hadoop YARN) for
additional capabilities of assessment and benchmarking. We
will also replicate streamline in datacenter environments
with empirically measured network characteristics in cap-
turing real-world performance variations.

REFERENCES
[1]
[2]

X. Liu, N. Iftikhar, and X. Xie, “Survey of real-time processing
systems for big data,” in Proc. of the IDEAS, 2014.
Apache kafka. Accessed: 2025-04-29. [Online]. Available: https:

/ /katka.apache.org/.

[3] Structured streaming programming guide - spark
3.5.5 documentation. Accessed: 2025-04-29. [On-
line]. Available: https:/ /spark.apache.org/docs/latest/
structured-streaming-programming-guide.html/.

[4] Structured streaming programming guide - spark 3.5.5
documentation. Accessed: 2025-04-29. [Online]. Avail-
able: |https://nightlies.apache.org/flink/flink-docs-release-2.0/

docs/dev/datastream/overview/.

P. Carbone, M. Fragkoulis, V. Kalavri, and A. Katsifodimos, “Be-
yond analytics: The evolution of stream processing systems,” in
Proc. of the ACM SIGMOD, 2020.

ns-3 network simulator. Accessed: 2023-01-06. [Online]. Available:
https://www.nsnam.org.

Omnet++ discrete event simulator. Accessed: 2023-01-06. [Online].
Available: https:/ /omnetpp.org/.

H. H. Liu, Y. Zhu, J. Padhye, J. Cao, S. Tallapragada, N. P.
Lopes, A. Rybalchenko, G. Lu, and L. Yuan, “Crystalnet: Faithfully
emulating large production networks,” in Proc. of the ACM SOSP,
2017.

J. Cao, Y. Liu, Y. Zhou, L. He, and M. Xu, “Turbonet: Faithfully
emulating networks with programmable switches,” IEEE/ACM
TON, 2022.

(5]

(6]
(71
(8]

(9]

[14]
[15]
[16]
[17]

(18]

(19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

flexible stream processing application prototype generator,” in
2020 20th IEEE/ACM International Symposium on Cluster, Cloud and
Internet Computing (CCGRID). 1IEEE, 2020, pp. 61-70.

Confluent — apache kafka® reinvented for the cloud. Accessed:
2024-08-30. [Online]. Available: https://www.confluent.io/.

The data and ai company — databricks. Accessed: 2024-08-30.
[Online]. Available: https://www.databricks.com/.

Mininet: An instant virtual network on your laptop (or other pc).
Accessed: 2023-01-16. [Online]. Available: http://mininet.org/.
streamline code repository. [Online]. Available: https://github.
com/PINetDalhousie/streamline

M. M. Amin Ifath, M. Neves, and I. Haque, “Fast prototyping of
distributed stream processing applications with stream2gym,” in
Proc. of the IEEE ICDCS Conf., 2023.

Y. Fu and C. Soman, “Real-Time Data Infrastructure at Uber,” in
Proc. of the ACM SIGMOD Conf., 2021.

D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig, E. Eide,
L. Stoller, M. Hibler, D. Johnson, K. Webb et al., “The design and
operation of {CloudLab},” in Proc. of the USENIX ATC, 2019.

K. Keahey, J. Anderson, Z. Zhen, P. Riteau, P. Ruth, D. Stanzione,
M. Cevik, J. Colleran, H. S. Gunawi, C. Hammock,]J. Mambretti,
A. Barnes, F. Halbach, A. Rocha, and J. Stubbs, “Lessons Learned
from the Chameleon Testbed,” in Proc. of the USENIX ATC, 2020.
N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown,
“Reproducible Network Experiments Using Container-Based Em-
ulation,” in Proc. of the ACM CoNEXT, 2012.

A. Vianna, W. Ferreira, and K. Gama, “An exploratory study
of how specialists deal with testing in data stream processing
applications,” in Proc. of the ACM/IEEE ESEM. IEEE, 2019, pp.

1-6.
Testing kafka streams. Accessed: 2023-01-06. [On-
line]. Awvailable: https://kafka.apache.org/20/documentation/

streams/developer-guide/testing.html.

Framework for apache flink unit tests. Accessed: 2023-01-06.
[Online]. Available: https://github.com/ottogroup /flink-spector.
S. Mostafa and X. Wang, “An empirical study on the usage of
mocking frameworks in software testing,” in Proc. of the IEEE QSIC
Conf., 2014, pp. 127-132.

K. Kallas, F. Niksic, C. Stanford, and R. Alur, “Diffstream: differ-
ential output testing for stream processing programs,” Proc. of the
ACM Program. Lang., vol. 4, no. OOPSLA, pp. 1-29, 2020.

E. Asyabi, Y. Wang, J. Liagouris, V. Kalavri, and A. Bestavros, “A
new benchmark harness for systematic and robust evaluation of
streaming state stores,” in Proc. of the ACM EuroSys Conf., 2022.

J. Karimov, T. Rabl, A. Katsifodimos, R. Samarev, H. Heiskanen,
and V. Markl, “Benchmarking distributed stream data processing
systems,” in 2018 IEEE 34th International Conference on Data Engi-
neering (ICDE), 2018, pp. 1507-1518.

S. Chintapalli, D. Dagit, B. Evans, R. Farivar, T. Graves, M. Holder-
baugh, Z. Liu, K. Nusbaum, K. Patil, B. J. Peng ef al., “Bench-
marking streaming computation engines: Storm, flink and spark
streaming,” in Proc. of the IEEE IPDPSW, 2016.

S. Henning, A. Vogel, M. Leichtfried, O. Ertl, and R. Rabiser, “Shuf-
flebench: A benchmark for large-scale data shuffling operations
with distributed stream processing frameworks,” in Proceedings of
the 15th ACM/SPEC International Conference on Performance Engi-
neering, 2024, pp. 2-13.

G. Di Lena, A. Tomassilli, D. Saucez, F. Giroire, T. Turletti, and
C. Lac, “Distrinet: A mininet implementation for the cloud,” in
ACM SIGCOMM Comput. Commun. Rev., 2021.

Mininet cluster edition. Accessed: 2023-01-06. [On-
line]. Available: https://github.com/mininet/mininet/wiki/
Cluster-Edition-Prototype.

The graphml file format. Accessed: 2023-01-06. [Online]. Available:
http://graphml.graphdrawing.org/.

The official yaml web site. Accessed: 2023-01-19. [Online].
Available: https://yaml.org/.

Authorized licensed use limited to: Dalhousie University. Downloaded on September 11,2025 at 03:16:12 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

https://kafka.apache.org/.
https://kafka.apache.org/.
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html/.
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html/.
https://nightlies.apache.org/flink/flink-docs-release-2.0/docs/dev/datastream/overview/.
https://nightlies.apache.org/flink/flink-docs-release-2.0/docs/dev/datastream/overview/.
https://www.nsnam.org.
https://omnetpp.org/.
https://www.confluent.io/.
https://www.databricks.com/.
http://mininet.org/.
https://github.com/PINetDalhousie/streamline
https://github.com/PINetDalhousie/streamline
https://kafka.apache.org/20/documentation/streams/developer-guide/testing.html.
https://kafka.apache.org/20/documentation/streams/developer-guide/testing.html.
https://github.com/ottogroup/flink-spector.
https://github.com/mininet/mininet/wiki/Cluster-Edition-Prototype.
https://github.com/mininet/mininet/wiki/Cluster-Edition-Prototype.
http://graphml.graphdrawing.org/.
https://yaml.org/.

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2025.3587641

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, AUGUST 20XX 15

[36] E.C.Molero, S. Vissicchio, and L. Vanbever, “Fast in-network gray
failure detection for isps,” in Proc. of the ACM SIGCOMM Conf.,
2022.

[37] K. Hazelwood, S. Bird, D. Brooks, S. Chintala, U. Diril, D. Dzhul-
gakov, M. Fawzy, B. Jia, Y. Jia, A. Kalro et al., “Applied machine
learning at facebook: A datacenter infrastructure perspective,” in
Proc. of the IEEE HPCA Conf., 2018.

[38] N. Kang, Z. Liu, J. Rexford, and D. Walker, “Optimizing the “one
big switch” abstraction in software-defined networks,” in Proc. of
the ACM CoNEXT Conf., 2013.

[39] Rabbitmgq: One broker to queue them all — rabbitmq. Accessed:
2025-04-29. [Online]. Available: https://www.rabbitmq.com/.

[40] M. M. A. Ifath, M. Neves, B. Bremner, J. White, T. Szeredi, and
I. Haque, “Are data streaming platforms ready for a mission
critical world?” Authorea Preprints, 2024.

[41] G. Van Dongen and D. Van den Poel, “Evaluation of stream
processing frameworks,” IEEE TPDS, 2020.

[42] Open source cloud computing infrastructure -
stack. Accessed: 2024-07-18. [Online]. Available:
/ /www.openstack.org/.

[43] A.F. Ocampo Palacio, T. Wauters, B. Volckaert, and F. De Turck,
“Scalable distributed traffic monitoring for enterprise networks
with spark streaming,” in Proc. of the ECCWS, 2018.

[44] D. Kumar, S. Ahmad, A. Chandra, and R. K. Sitaraman, “Aggnet:
Cost-aware aggregation networks for geo-distributed streaming
analytics,” in Proc. of the IEEE/ACM SEC Conf., 2021.

[45] E Lai, M. Chowdhury, and H. Madhyastha, “To relay or not to
relay for Inter-Cloud transfers?” in Proc. of the USENIX HotCloud
Conf., 2018.

[46] L. Rosa, W. Song, L. Foschini, A. Corradi, and K. Birman, “Dere-
chodds: Strongly consistent data distribution for mission-critical
applications,” in IEEE MILCOM, 2021.

[47] J. Miao, N. Lv, Q. Gao, K. Chen, and X. Wang, “Fault-tolerant
embedding algorithm for node failure in airborne tactical network
virtualization,” IEEE Access, 2022.

[48] C. Stanford, K. Kallas, and R. Alur, “Correctness in stream pro-
cessing: Challenges and opportunities,” in Proc. of the CIDR, 2022.

[49] R. Govindan, I. Minei, M. Kallahalla, B. Koley, and A. Vahdat,
“Evolve or die: High-availability design principles drawn from
googles network infrastructure,” in Proc. of the ACM SIGCOMM
Conf., 2016.

[50] A. Alquraan, H. Takruri, M. Alfatafta, and S. Al-Kiswany, “An
analysis of network-partitioning failures in cloud systems,” in
Proc. of the USENIX OSDI Conf., 2018.

[51] Kip-996: Pre-vote - apache kafka - apache software foundation.
Accessed: 2025-04-29. [Online]. Available: https://cwiki.apache.
org/confluence/display /KAFKA /KIP-996%3A+Pre-Vote/ .

[52] A. Basiri, N. Behnam, R. De Rooij, L. Hochstein, L. Kosewski,
J. Reynolds, and C. Rosenthal, “Chaos engineering,” IEEE Software,
vol. 33, no. 3, pp. 3541, 2016.

[53] A.Vogel, S. Henning, E. Perez-Wohlfeil, O. Ertl, and R. Rabiser, “A
comprehensive benchmarking analysis of fault recovery in stream
processing frameworks,” arXiv preprint arXiv:2404.06203, 2024.

[54] E Xu, E Liu, H. Jin, and A. V. Vasilakos, “Managing performance
overhead of virtual machines in cloud computing: A survey, state
of the art, and future directions,” Proc. of the IEEE, 2014.

[55] R. Iyer, M. Unal, M. Kogias, and G. Candea, “Achieving
microsecond-scale tail latency efficiently with approximate opti-
mal scheduling,” in Proceedings of the 29th Symposium on Operating
Systems Principles, 2023, pp. 466—481.

[56] M. Bilal and M. Canini, “Towards automatic parameter tuning of
stream processing systems,” in Proc. of the ACM SoCC, 2017.

open-
https:

Md. Monzurul Amin Ifath is a Doctoral stu-
dent at Dalhousie University working on dis-
tributed systems, computer networks, and ma-
chine learning. He holds a Bachelor's degree
from BUET, Bangladesh, and has three years of
experience working with DRDC and GDMS-C on
collaborative projects.

Tommaso Melodia is the William Lincoln Smith
Professor with the Department of Electrical and
Computer Engineering at Northeastern Univer-
sity in Boston. He is also the Founding Direc-
tor of the Institute for the Wireless Internet of
Things and the Director of Research for the
PAWR Project Office. He received his Laurea
(integrated BS and MS) from the University of
Rome - La Sapienza and his Ph.D. in Electri-
cal and Computer Engineering from the Georgia
Institute of Technology in 2007. He is an IEEE
Fellow, an ACM Distinguished Member, and a recipient of the National
Science Foundation CAREER award. He received several best paper
awards, including at IEEE Infocom 2022. Prof. Melodia is the Editor
in Chief for Computer Networks and a co-founder of the 6G Sym-
posium, and served as the Technical Program Committee Chair for
IEEE Infocom, and General Chair for ACM MobiHoc, among others.
Prof. Melodia’s research on modeling, optimization, and experimental
evaluation of wireless networked systems has been funded by many US
government and industry entities.

Israat Haque is an Associate Professor in the
Faculty of Computer Science at Dalhousie Uni-
versity, where she leads the Programmable and
Intelligent Networking (PINet) Lab. Her exper-
tise is in systems and security. Specifically,
she leverages network programmability to de-
velop cutting-edge, high-performance, secure,
and dependable systems for Al/ML, Big Data,
cloud, telecommunication, and loT systems. She
is also interested in applying data-driven ap-
proaches to solve practical and relevant prob-
lems. Dr. Haque received her PhD from the Department of Computing
Science at the University of Alberta. Subsequently, she held an NSERC
post-doctoral position at the Department of Computer Science and
Engineering at the University of California, Riverside, before joining
Dalhousie University. She was recognized as an ACM/IEEE N2Women
Rising Star in 2021 for her research and leadership contributions. Sub-
sequently, she received Digital Nova Scotia’s Thinking Forward Award
2022 for training the next generation of tech talents. In 2024, she
received the Alumni Honour Award from the University of Alberta.

Authorized licensed use limited to: Dalhousie University. Downloaded on September 11,2025 at 03:16:12 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

https://www.rabbitmq.com/.
https://www.openstack.org/.
https://www.openstack.org/.
https://cwiki.apache.org/confluence/display/KAFKA/KIP-996%3A+Pre-Vote/.
https://cwiki.apache.org/confluence/display/KAFKA/KIP-996%3A+Pre-Vote/.

	Introduction
	Background and Motivation
	Related Work
	streamline Overview
	Architecture and Workflow
	Configuration API
	Example

	Implementation and Evaluation Setup
	Use cases of streamline
	Prototyping Stream Processing Applications
	Emulating Networking Conditions
	Testing Reliability

	Performance Evaluation of streamline
	Dependable Accuracy
	Resource Usage
	Support for Cluster Deployment
	Benchmarking Stream Processing Platforms

	Conclusion
	References
	Biographies
	Md. Monzurul Amin Ifath
	Tommaso Melodia
	Israat Haque

