On the Deployment Feasibility of Message Oriented
Middlewares 1in Mission-critical Applications

Md. Monzurul Amin Ifath?, Miguel Neves2, Tommaso Melodia®, Israat Haque1
!Dalhousie University, 2Samsung Research, 3Northeastern University

Abstract—Mission-critical applications (MCA) like smart grid
management, first-aid response, and tactical coordination in
military search and rescue operations refer to applications that
can pose a risk to human lives or cause extensive and catastrophic
losses. The deployment and management of these applications
need careful consideration to meet the stringent performance
demand of resource-constrained environments. One way to
achieve such performance and dependability demand is to adopt
Commodity-of-the-shelf (COTS) Message Oriented Middlewares
(MOMs) (e.g., Apache Kafka, RabbitMQ) as they enable real-
time data analytics and informed decision making. Despite their
extensive usage in legacy business intelligent applications, little
is known about their suitability for mission-critical applications.
This paper fills that gap by first deploying and testing mission-
critical applications on Apache Kafka and RabbitMQ. Then, we
measure the performance, security, and reliability of the chosen
MOMs to support MCA. The evaluation results confirm that
Apache Kafka outperforms RabbitMQ, making it a potential
candidate to deploy MCA. Specifically, Kafka requires 13x less
bandwidth than RabbitMQ, which could be further reduced by
85% using effective parameter tuning. Our findings pave the way
for MOMs to be adopted in mission-critical applications to meet
their stringent performance and dependability demands.

I. INTRODUCTION

Mission or safety-critical applications (MCA) are those
that pose a risk to human lives or can cause extensive and
catastrophic losses, e.g., aircraft control, smart grid manage-
ment, first-aid response, and tactical coordination in military
search and rescue operations [1]. These applications can lever-
age Message-Oriented Middleware (MOM) platforms (e.g.,
Apache Kaftka, RabbitMQ) for efficient and reliable com-
munications among distributed system entities, e.g., message
brokers, producers, and consumers. More than 80% of Fortune
100 companies use one or more MOM platforms in their
deployments [2]. Applications such as financial transaction
monitoring, IoT sensor data processing, and content recom-
mendations are actively using MOMs. The trend is also no-
ticeable in mission-critical contexts where high reliability, fault
tolerance, real-time performance, and security are important
[3]. MOM simplifies the development process by promoting
easier integration, enhancing component reuse and extension,
and supporting improved overall scalability. However, it is
essential to extensively evaluate the performance and depend-
ability of the current MOM platforms to assess their readiness
in mission-critical applications such as healthcare, defense,
transport, and energy sectors.

Existing MOM platform evaluations, often conducted for
traditional applications, may not adequately address the chal-
lenges posed by MCAs operating in constrained environments

(e.g., limited bandwidth, limited computing power) [4]-[6].
Also, the evaluations in [7], [8] focus on MCA, such as
shipping and tactical coordination on a single platform, limit-
ing their findings. MCAs demand different configurations and
selections of MOMs over an agile evaluation environment, but
such setup and evaluations are missing in existing solutions.
For example, in smart grid management, high availability and
rapid response times are essential to prevent cascading failures
in power distribution. In tactical situations, systems may
prioritize quick data access over completeness. These diverse
requirements underscore the need for careful consideration
when selecting and configuring MOMs for MCAs.

This work fills that gap by first developing a realistic and
extensible testbed to assess MOMs for MCA with perfor-
mance and resource requirements. Then, we select two MOM
platforms, Apache Kafka and RabbitMQ (rMQ), for mission-
critical scenarios. Kafka’s disk-based storage model provides
stronger guarantees for synchronization and consistency essen-
tial in MCA. Unlike other MOMs (e.g., Redis, DDS), which
keep history in memory and are therefore practically limited
in the number of items they can retain, Kafka’s history is
persisted to disk, limiting it only by available storage capacity
[9]. Also, Kafka and rMQ streams maintain extensive history
logs, ensuring reliable data access even after reconnections.
Kafka’s pulling mechanism provides immediate awareness
of link loss or restoration despite potential latency and in-
creased network traffic. Finally, rMQ offers flexible routing
and message delivery options, making it suitable for complex
messaging patterns, albeit with a trade-off in throughput. These
robust features render both platforms well-suited for meeting
the stringent requirements of MCA. We choose two MCAs:
i) smart grid management (wired mesh communications) and
ii) military coordination (wireless satellite communications).
These two applications have unique environmental and per-
formance demands, e.g., the bandwidth demand of smart grid
management and military coordination is at most 12.5 and
0.625 Mbytes/s, respectively, while response time must be at
most 100 ms and 20 s, respectively.

Then, we comprehensively analyze the performance, reli-
ability and security features of the chosen MOM platforms.
The evaluation results reveal that Kafka outperforms rMQ in
performance and security. For example, it requires 13x less
bandwidth than rMQ, which could be further reduced by 85%
using effective parameter tuning. Furthermore, Kafka adds
only a negligible bandwidth demand for secure authentication
compared to rMQ. Thus, we further investigate Kafka’s relia-

bility and observe that around 25% of messages can be lost in
the presence of network partitions, which requires developing
resilience applications in the presence of failures. We will
share the software artifact as a GitHub repository [10] if the
paper is accepted.

II. BACKGROUND

This section presents the necessary background on MOM
platform to understand the proposed work.

MOM platforms facilitate communication between dis-
tributed components via asynchronous message passing. They
can be broker-based or brokerless. Broker-based designs
assume the existence of a central intelligence (a.k.a., the
message broker) responsible for managing the message de-
livery to all interested parties. Most existing brokers adopt
a publish/subscribe model, where messages are categorized
according to their topics/routing keys. This design adds a
decoupling layer between data senders (publishers/producers)
and receivers (subscribers/consumers), as their communica-
tions can be asynchronous. Brokerless designs, on the other
hand, realize the data communication by establishing point-
to-point connections directly between senders and receivers.
Messages are delivered using push or pull mechanisms. Push-
based models are suitable for low-latency communication but
may overwhelm slow consumers, whereas pull-based models
offer more control at the expense of potential delay.

MOM platforms can offer different levels of data persis-
tence, which refers to the ability to store messages for future
consumption and/or recovery. Data persistence can be useful
for several reasons, such as delivering messages to applications
that join the system at a later time and keeping the data
available even when a publishing application has terminated.
Current platforms can use different strategies to persist data,
including in-memory, disk, or database persistence, each with
its own trade-offs between performance, durability, and consis-
tency. In terms of consistency models, MOMs support mostly
two: strong or weak. Strongly consistent platforms require data
to be the same in all nodes at any time. Weakly consistent
platforms, on the other hand, can tolerate delays and keep
forwarding messages while updating the state between a leader
broker and its replicas. We may choose the consistency model
as per the applications need. Table I summarizes common
MOM platforms categorized by their design philosophies
and consistency guarantees. We present four representative
platforms relevant to MCAs: distributed logs, message queues,
in-memory data stores, and data distribution services.

Distributed logs (e.g., Apache Kafka) store all messages
in persistent logs, allowing replay and strong synchronization
across nodes which is key for fault-tolerant systems. Message
queues (e.g., RabbitMQ) typically discard messages after
delivery but offer efficient memory use and low latency;
recent extensions (e.g., RabbitMQ Streams) add persistent
and replayable messaging options. In-memory data stores
(e.g., Redis) focus on high-speed data exchange using volatile
storage, suited for applications with low latency tolerance but
less reliability need. Data distribution services (DDS) adopt

a brokerless architecture with peer-to-peer communication,
supporting QoS and real-time guarantees but often requiring
complex configuration.

These design choices of MOM platforms directly affect their
suitability for MCAs. For instance, the choice of persistence
not only influences replication overhead and bandwidth re-
quirements but also impacts latency during network recovery.
So, careful consideration of these design choices is essential to
align MOM selection and configuration with the performance
demands of mission-critical applications.

III. RELATED WORK

A few efforts have compared the performance and reliability
functionalities of different MOM platforms. Fu et al. [4]
compare the latency and throughput of five MOM platforms,
namely Apache Kafka, RabbitMQ, RocketMQ, ActiveMQ
and Apache Pulsar, on a customized testing framework. The
authors vary features such as the message size, number of pro-
ducers/consumers, and number of partitions in their analyses.
Maharjan et al. [5] perform a similar study, but also consider
the Redis platform in their comparisons and use a standard
benchmarking tool (OpenMessaging framework) as part of
their methodology. Alongside throughput and latency, Dobbe-
laere et al. [6] evaluate the reliability features of COTS MOM
platforms. In particular, the authors show that throughput can
drop more than 50% in both Apache Kafka and RabbitMQ
when replication is in place. In common, none of the above
studies consider analyzing MOM platforms in MCAs.

Recent research has proposed the adoption of COTS MOM
platforms in MCAs. For example, Liu and Jiang [7] developed
a MOM framework for the communication between shipboard
information system modules based on Apache Pulsar. Rosa et
al. [8] deployed the standard Data Distribution Service (DDS)
API on top of the Derecho distributed coordination library
and analyzed it in the context of an avionics application.
Albano et al. [11] performed a qualitative comparison between
the Remote Procedure Call (RPC), message passing, and
publish/subscribe architectures when applied to smart grids.
Unlike these efforts, we provide a comprehensive analysis
of COTS MOM platforms when operating on a highly con-
strained infrastructure, i.e., subject to high link delays, low
bandwidth capacity, and frequent node disconnections, all
common characteristics of modern mission-critical systems.

IV. DEPLOYMENT AND IMPLEMENTATION

This section presents the mapping of mission-critical ap-
plications onto the selected MOM platforms. It details the
deployment setups and design rationale tailored to meet the
specific requirements of each application. Table II summarizes
the key requirements for the respective applications.

Military coordination: Figure 1 depicts the military coor-
dination application scenario. We assume several battle units
on land, air, and sea communicating over a tactical network
[8]. Each unit comprises multiple members, such as soldiers
and aircraft, that must share information (e.g., position reports)
within and between units. Each unit is also organized into a

TABLE I: Example message oriented middlewares.

Platform Family Communication pattern Forwarding model Persistence Consistency model Advantages Disadvantages
Kafka Distributed log Broker-based Pull Yes Weak / Strong o, 1 A
RabbitMQ Message queue Broker-based Push Yes Strong ~ 1
ZeroMQ Message queue Broker-based / brokerless Push No Weak / Strong o, T E
Redis In-memory data store Broker-based Pull / push Yes Weak _D> A
OpenDDS Data distribution service Brokerless Push Yes Weak / Strong 00, V' Y

1 High throughput © Scalability ~ Flexible routing and delivery ¢ Lightweight B Fast data access and processing oo Real-time

v Reliable A Lack of complete security measures | Lower throughput 7 Limited / no persistence 4 Complex configuration

star topology, i.e., the communication always flows through
a local command point (red dashed boxes). Different units
connect through a satellite network, and the whole system
requires: i) ordered, secure, and authenticated delivery of every
message at least once and ii) tolerance to disconnections at
the unit level, i.e., the log of messages from within and in-
between units must be synchronized upon a unit reconnection.
Battle unit disconnection is a common situation in the military
domain, where the entire unit disconnects from a tactical
network to move to a different place on the battlefield and
then reconnects from the new place.

= 3=, o
e - BX
“Sady " ;
Battle unit
(Air Force) ¢ ‘ ’::‘

s 5 Y
Local command N
point A " ——— .D

e L

P Battle unit
z (Navy)

—
i

Battle unit /

Battle unit Headquarter

(Army) Headquarter

Fig. 1: Military coordination application reference deployment.

The link capacity should be up to 0.625 Mbytes/s with a
maximum latency of 20 seconds. The system must handle a
network size of up to 20 nodes, with a path length of up
to 4 hops with a link delay between 10 ms and 2 seconds.
These non-functional requirements ensure timely and reliable
communication, prioritizing high availability to accommodate
dynamic and unpredictable environments, with control traffic
overhead not exceeding 50% of the link capacity, and the
synchronization latency for a single message must be at most
5 seconds [12].

We implement and deploy this application on the chosen
MOM platforms and compare to which extent each platform
can meet application requirements. We assume a cluster-
based setup where each battle unit hosts a message broker
(i.e., cluster node) at its local command point. We replicate
message queues (or logs) among all nodes participating in
the cluster to ensure they remain operational upon a battle
unit disconnection. In other words, each broker should be
able to i) keep forwarding messages from/to members within
a unit when this unit is disconnected and ii) automatically
synchronize intra-unit messages with other units upon a re-
connection. Each node in our reference architecture also hosts

a data producer/consumer that mimics the battle unit members
(e.g., a ship, soldier, or aircraft). Each producer continuously
generates data at 30 Kbytes/s, simulating real-world actors
(e.g., soldiers) in a battle unit.

Smart grid management: Figure 2 illustrates the reference
deployment of the smart grid management application [13],
which coordinates data from sensors and monitoring devices
across a large-scale power grid. The grid is divided into
five zones, each managed by a local control center. These
centers are interconnected through a nationwide communi-
cation network characterized by high data rate and strict
latency requirements. Each control center comprises multiple
components that generate and process time-sensitive telemetry
(e.g., voltage, frequency, load) for real-time state estimation,
anomaly detection, and corrective actions.

The communication network supports a maximum through-

. put of 12.5 Mbytes/s with end-to-end latencies not exceeding
i 100 ms. The intra-zone link delay ranges between 1 and 10
| ms. The system must ensure: i) strict message ordering for

accurate sequential event analysis, ii) consistent and available
delivery of messages under failures, and iii) at-least-once
delivery semantics to prevent data loss in critical operations
such as load shedding and grid restoration.

Prod 1..n E ons 1..m

Fig. 2: Smart grid management reference deployment (inspired
from [13]).

We deploy MOM clusters within each control center, with
brokers replicating data across zones to maintain resiliency
against node or link failures. Producers (sensors and me-
ters) and consumers (controllers and analytics engines) are
deployed within the same zone but are logically decoupled via
the MOM layer. Each producer emits data at a rate consistent
with modern phasor measurement units (PMUs), approximated
as 100 Kbytes/s. This architecture ensures that each zone can

operate autonomously while preserving a global view of the
grid-state via synchronized broker replication and message
persistence.

TABLE II: Summary of military coordination and smart grid
management application requirements.

Application: Military coordination

Critical requirements: Low-latency awareness, Network resilience
Link type: SATCOM

Available bandwidth: < 0.625 Mbytes/s

Tolerated latency: < 20 s

Fault tolerance: Availability, Partition tolerance

Application: Smart grid management

Critical requirements: High availability, Rapid response
Link type: Wired mesh

Available bandwidth: < 12.5 Mbytes/s

Tolerated latency: < 100 ms

Fault tolerance: Consistency, Availability

Setup and Evaluation: We ran our experiments on a 10-
core Intel Xeon Silver 4210R @ 2.40 GHz server with 32 GB
of memory and 2 TB of storage. The server, running Ubuntu
22.04 (kernel version 5.15), had hyper-threading disabled.
Our reference deployment architecture was implemented on
Mininet version 2.3.0, which uses containers to emulate real
applications, providing a more realistic evaluation environment
compared to traditional simulators like ns-3 and OMNeT++.
Our testbed setup is adaptable and supports integrating new
MOMs through plug-ins (details in [10]). The testbed also
allows one to configure standard communication channel pa-
rameters on emulated links, including delay, bandwidth, and
packet loss. The dependability of the testbed is assessed by
comparing its performance with the hardware baselines [12].

We deployed two MOM platforms: Apache Kafka 3.8.0
and RabbitMQ 3.9.3 (rMQ) in the testbed to evaluate the
performance of the chosen applications. We set 10 brokers in
the military coordination application while 5 in the smart grid
management. These brokers can support a varying number of
producers and consumers depending on available capacity and
application need. This tightly coupled and small-scale clusters
of brokers are chosen to ensure deterministic performance
(e.g., ultra low latency) and rapid fault recovery. In the case of
a large number of brokers demand (e.g., 100 nodes), a hierar-
chical and adaptive deployment strategies are recommended to
avoid challenges like an increased synchronization overhead,
a highly complex configuration tuning, and a higher suscep-
tibility to network partitions [14]. Our study thus establishes
a robust baseline for constrained deployments and provides a
foundation for future extensions to larger scales.

We adopted three key metrics to evaluate the MOM plat-
forms: bandwidth demand, message latency, and loss ratio.
Bandwidth demand, measuring the total bandwidth required
for message forwarding, is a critical indicator of performance
and security overhead, particularly when security mechanisms
like authentication are enabled. Message latency defined as
the elapsed time between a producer sending a message and
the reception of the acknowledgment from the consumer,
directly assesses the performance and responsiveness of the

MOM platforms. The loss ratio, representing the proportion
of messages lost, is a direct measure of reliability. We collect
these measurements after a 60-second warm-up interval to
ensure the system reaches a steady state. We conducted
ten iterations of each evaluation to measure their mean and
confidence intervals.

V. EVALUATIONS RESULTS

This section shares the key findings of the performance,
security, and reliability of the chosen platforms.

A. Performance

While the performance of MOMs has been studied in local
and wide area networks, little is known about their response
in highly constrained infrastructures, e.g., networks presenting
low-bandwidth, high link delay, and high probability of data
loss, which are encountered in mission-critical domains. Thus,
we consider such constrained environments for the chosen
MCA and evaluate the bandwidth and latency of Kafka and
™MQ.

We consider the military coordination application in the
bandwidth evaluation due to its bandwidth-constrained links
(0.625 Mbytes/s). Figure 3 shows the total bandwidth demand
from Kafka and rMQ for different numbers of broker nodes.
MOMs generally require a high replication level in mission-
critical setups, resulting in high communication overhead.
The higher bandwidth demand of rMQ compared to Kafka
(approximately 13x) can be attributed to several factors. First,
rMQ does not compress messages by default during inter-
broker communication, leading to more data being transferred,
especially in scenarios with high replication for fault tolerance.
Second, rtMQ’s message delivery mechanism involves sending
messages one at a time, which increases the overhead of con-
trol traffic. In contrast, Kafka’s architecture allows for message
batching, reducing the relative overhead of control traffic and
more efficient data transfer. These architectural differences
contribute to Kafka’s lower bandwidth consumption, making
it more suitable for bandwidth-constrained MCAs.

100

'g —— Kafka-10-nodes

© 804 vt Kafka-20-nodes L AN Ny

£~ —=- rMQ-10-nodes M/ YV

3R 60 i

<8 i

el

S I

S22 401 :

5% !

T~ I T

< 20 T N

m :- - . i..'c.c et

[+2] B 1 N

0 . — :
0 100 200 300 400

Time (s)

Fig. 3: Bandwidth demand of Kafka and rMQ with varying
number of brokers.

In terms of latency evaluation, we assess the performance
of Kakfa and rMQ for the smart grid application due to
its strict latency requirement (100 ms), which is not the

case for the military coordination application. Figure 4 shows
the evaluation results. Overall, the latency increases signif-
icantly (more than 200% and 75% for Kafka and rMQ,
respectively) in a highly constrained network compared to a
baseline scenario with negligible link delay (1 ms). However,
despite this sharper degradation, Kafka still delivers lower
absolute latency than rMQ across most percentiles. This is
primarily because rMQ relies on the AMQP protocol, which
introduces multiple round-trip delays due to connection setup
and acknowledgment requirements. Furthermore, rMQ must
wait for consumer acknowledgments before sending the next
message, limiting throughput under constrained conditions.
Kafka, with its asynchronous, batched communication and
disk-based buffering, is better suited for sustained message
flow even when link quality degrades.

1.00
!
[
0.75 1 , .‘.”
[! o
A 0.501 , o
() . o
, ’.” = Kafka-1ms
0.25 1 i ‘," = Kafka-10ms
, R rMQ-1ms
] o * rMQ-10ms
0.00 aen®,
0 50 100 150 200

Latency (ms)

Fig. 4: Cumulative distribution function (CDF) of the message
latency from Kafka and rMQ with different link delays.

B. Security

Mission-critical systems are increasingly being targeted by
attackers. As a result, there has been an uptick in novel de-
fenses for hardening these systems (e.g., [15], [16]). Although
security is still not a primary concern on most MOMs, the sup-
port for different security mechanisms on them is expanding
quickly. In this evaluation, we first present the security settings
that operators must configure in MOM platforms. Then, we
present the added overhead that MOMs may introduce to offer
required security services in MCA.

S
3

Bandwidth Demand (Mbytes/s)

Kafka w/o SASL Kafka w/ SASL rMQ w/o SASL rMQ w/ SASL

Fig. 5: Bandwidth overhead comparison for Kafka and rMQ
with and without SASL authentication enabled in the military
coordination application.

We first extensively analyze the level of security that the
chosen MOMs can offer. We observe that current platforms
are not secure by default, i.e., users must explicitly set a

security mechanism to enforce policies. For example, Kafka’s
data encryption approach must explicitly set TLS listeners on
each broker to avoid plaintext traffic flow. Also, operators
must delete any existing plaintext listener to avoid automatic
initialization. The second issue is the manual ACL configu-
ration due to not having any high-level API, which can be
time consuming and error-prone in large scale MCA. Next,
we assess the performance overhead introduced by enabling
the Simple Authentication and Security Layer (SASL) authen-
tication framework for both Kafka and rMQ to check their
applicability in MCA. We consider the military coordination
application due to its stringent resource requirements. The
evaluation results are shown in Figure 5, which indicates
that Kafka and rMQ add around 2% and 12% bandwidth
overhead, respectively. The difference in overhead between
the two platforms is due to a combination of factors, primarily
the architectural and protocol-level distinctions between Kafka
and rMQ. Kafka’s native binary protocol handles SASL with
greater efficiency, while tMQ’s reliance on the AMQP proto-
col, mandates SASL for secure connections, contributes to a
higher relative overhead.

C. Reliability

Network partitioning and disconnections may occur in cer-
tain applications due to the nature of their communications.
For example, military coordination application uses intermit-
tent wireless communications prone to failure along with
dynamic addition and deletion of nodes. Thus, we mimic
such anomaly conditions in this applicaiton by randomly
disconnecting a node for approximately 20% of the experiment
duration. Specifically, we randomly disconnect the node host-
ing the leader broker for one of the topics. The disconnection
time follows a uniform distribution between 100 and 140
seconds, with a mean disconnection time of 120 seconds.
The node disconnects after the system reaches its steady state
and re-connects to the cluster after the disconnection period
expires. Finally, we evaluate the reliability of Kafka as it
already outperforms rMQ.

10-

Consumer ID
[¢)]

0 25K 5K 7.5K
Message ID

10K

Fig. 6: Message delivery matrix for the co-located producer
with a disconnected broker.

We examine the data delivery performance of a Kafka
producer co-located with the disconnected broker by record-
ing the message reception status of each message for all
consumers. As in Figure 6, we observe that around 25%

of all messages are lost during the network partition period.
Moreover, these failures only affect the topic/log whose leader
broker is disconnected. This result aligns with previous studies
[17] that attribute such behavior to the data reconciliation
process of Kafka. When the disconnected broker rejoins the
cluster, Kafka may discard data or retrieve it from a stale log.
Thus, operators must consider a reliable design if uses Kafka
as their MOM platform.

D. Suggested Configuration Improvement

Most MOMs ship with a large number of configurable pa-
rameters (e.g., replication factor, batch size, acknowledgment
type). These parameters can be fine tuned for the best configu-
ration for a chosen MCA. Since Kafka outperforms rMQ, we
further investigate its capability to further improve resource
requirement, e.g., bandwidth, to support applications like
military coordination, which has the most scarce bandwidth.
We apply a grid search approach with more than 20 Kafka
parameters, including producer, broker, and consumer. Note
that these parameters are chosen following Kafka manual and
prior benchmarks [2], [18]. The list of key Katka parameters
of our evaluations is shown in Table III. The complete list of
parameters is available in our public repository [10].

Parameters Placement | Default | Range Utilized
Linger Producer |0's 0-1s

Batch Size Producer |16 KB |4 - 256 KB
Compression Producer None gzip, 1z4, zstd
Acknowledgment Producer 1 0,1,2
Buffer Memory Producer |32 MB |2 - 64 MB
Replica Max Wait Time | Broker 0.5s 0-5s
Replica Min Fetch Bytes | Broker 1B 1-200 KB
Max Wait Time Consumer | 0.5 s 0-5s

Min Fetch Bytes Consumer |1 B 1-200 KB
Session Timeout Consumer | 10 s 1-20s

TABLE III: Configuration of key Kafka parameters to optimize
bandwidth usage.

8
'g === wJ/o tuning .
] —— w/ tuning [
£ m 6 LY
3w '
@ AA, !
< VWSs_ AN]
w54 et N
Ta I !
3 !
T~ 2 !
c 1
© 1
m 1
0 ‘ ,M
0 100 200 300 400
Time (s)

Fig. 7: Impact of parameter tuning on Apache Kafka total
bandwidth demand.

Figure 7 shows the improvement in the bandwidth demand
of Apache Kafka after tuning the required parameters. Specifi-
cally, we measure the total bandwidth demand of Kafka before
(with default setup) and after the tuning process and show
that efficient parameter tuning can reduce the demand by 85%
compared to the default configurations. However, there are
two main challenges associated with the tuning process: first,

it takes a considerable amount of time to find a sweet spot
among the configuration parameters, and second, it may be
necessary to accommodate several goals (e.g., minimize both
bandwidth demand and latency) during the tuning process,
which makes the problem even more complicated. We plan
to explore automated parameter tuning as future research.

VI. CONCLUSION

This paper explored how existing MOM platforms could
support mission-critical applications. We chose military co-
ordination and smart grid applications as representative use
cases and assessed the performance, reliability and security of
Apache Kafka and rMQ. Extensive evaluations confirm that
Kafka outperforms rMQ in resource demand and overhead for
security services. Then, we have shown that Kafka’s resource
demand can be further reduced by judicious configuration
parameter tuning, e.g., we could reduce the bandwidth demand
by 85% applying parameter tuning. As part of future work,
we will investigate additional mission-critical applications
with in-depth performance evaluations of varying degrees of
network size and workload. We will also explore the automatic
parameter tuning and ACL configurations.

REFERENCES

[1] K. Fowler, “Mission-critical and safety-critical development,” IEEE
Instrumentation & Measurement Magazine, 2004.

[2] Apache kafka. Accessed: 2025-04-09. [Online].
https://kafka.apache.org/.

[3] B. Al-Madani et al., “Integrating data distribution service (dds) in smart
traffic systems: A comprehensive review,” Computer, 2025.

[4] G. Fu et al., “A fair comparison of message queuing systems,” /[EEE
Access, 2021.

[5] R. Maharjan et al., “Benchmarking message queues,” Telecom, 2023.

[6] P. Dobbelaere et al., “Kafka versus rabbitmq: A comparative study
of two industry reference publish/subscribe implementations: Industry
paper,” in Proc. of the ACM DEBS, 2017.

[71 K. Liu et al., “High performance shipborne message queuing service
prototype system based on apache pulsar,” in IEEE ICIBA, 2021.

[8] L. Rosa et al., “Derechodds: Strongly consistent data distribution for
mission-critical applications,” in [EEE MILCOM, 2021.

[9] J. Zhang et al., “Comparison of middlewares in edge-to-edge and

edge-to-cloud communication for distributed ros 2 systems,” Journal

of Intelligent & Robotic Systems, 2024.

Pinetdalhousie/mission-critical-messaging-platforms. Accessed: 2024-

04-10. [Online]. Available: https://github.com/PINetDalhousie/mission-

critical-messaging-platforms

M. Albano et al., “Message-oriented middleware for smart grids,”

Elsevier Computer Standards & Interfaces, 2015.

M. M. A. Ifath et al., “Fast prototyping of distributed stream processing

applications with stream2gym,” in Proc. of the IEEE ICDCS, 2023.

P. Kansal et al., “Bandwidth and latency requirements for smart trans-

mission grid applications,” IEEE Transactions on Smart Grid, 2012.

X. Guo et al., “Towards scalable, secure, and smart mission-critical iot

systems: review and vision,” in Proc. of the EMSOFT, 2021.

N. Burow er al., “Moving target defense considerations in real-time

safety- and mission-critical systems,” in Proc. of the ACM Workshop on

MTD, 2020.

J. Wang et al., “Rt-tee: Real-time system availability for cyber-physical

systems using arm trustzone,” in [EEE Symposium on SP, 2022.

A. Alquraan et al., “An analysis of network-partitioning failures in cloud

systems,” in Proc. of the USENIX OSDI Conf., 2018.

Z. Kang et al., “Dmsconfig: Automated configuration tuning for dis-

tributed iot message systems using deep reinforcement learning,” arXiv

preprint arXiv:2302.09146, 2023.

Available:

(10]

(11]
[12]
[13]
[14]

[15]

[16]
(17]

[18]

