

GreenStream: Enabling Sustainable LLM Inference in Stream Processing

Md. Monzurul Amin Ifath and Israat Haque

1. Problem Statement

• Large Language Models (LLMs) are increasingly integrated into stream processing applications (SPAs)

Custom energy meter for sustainable ML from GreenStream import EnergyMeter

Initialize the GreenStream energy meter

(e.g., predictive fraud detection, personalized recommendations, and GenAl travel assistants).

- LLM inference consumes significant energy, posing a sustainability challenge.
- Traditional optimization methods are hindered by the complexity of distributed nature of SPAs.

2. Approach

• We propose *GreenStream*, a framework to optimize the energy efficiency of LLM inference without compromising the performance of SPAs.

Conceptual Overview


```
energy meter = EnergyMeter()
```

```
# Load the pre-trained model, tokenizer
model name = "meta-llama/Llama-3-8B-text-completion"
. . . .
```

```
# Define prompt input and tokenize the prompt
prompt = [...]
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
```

Set generation parameters

```
generation params = {
    "max_seq_length": 512,
    "top p": 0.9,
    "temperature": 0.6,
    "max_gen_len": 64,
```

• • • •

```
# Generate output with energy measurement
with torch.no grad():
    energy_meter.begin() # Start measuring energy usage
    output_ids = model.generate(input_ids, **generation_params)
    energy meter.end()
                          # End measuring energy usage
```

Decode generated tokens and print in text

Total energy consumption is tracked by energy_meter Average total energy consumption for text generation: ~2900J

Workflow

- Take an existing SPA script as input.
- Apply patches to the SPA to enable energy meter and adjust batch size, I/O length, and parallelism.
- Impose GPU power capping and adaptive GPU energy consumption to optimize energy usage.
- Run the patched SPA through optimizer to confirm optimal balance between energy usage and performance.

5. Preliminary Results

- During inference, main energy consumer is the GPU.
- 3x energy consumption reduction with increasing batch size of 1 to 100 (in cost of higher GPU memory usage).
- Beyond a certain batch size, the decrease in energy usage plateaus as the GPU cores become fully utilized.

3. Setup Details

- Energy meter is based on PyRAPL, pynvml and only compatible with Intel processors and NVIDIA GPUs.
- Perform experiments on Intel Xeon Silver 4310 CPU and NVIDIA A100 GPU.
- Evaluate Meta Llama 3.1 8B for preliminary results.

6.Next Steps

- Automatically identify optimal power caps and model parameters for minimal energy consumption.
- Systematically assess the impact of different LLM variants on performance and energy usage (e.g., Llama 8B vs 70B).
- Evaluate energy efficiency of LLM inference on energy optimized inference servers (e.g., NVIDIA TensorRT).