
Fast Prototyping of Distributed Stream Processing
Applications with stream2gym

Md. Monzurul Amin Ifath, Miguel Neves, Israat Haque
Dalhousie University

Abstract—Stream processing applications have been widely
adopted due to real-time data analytics demands, e.g., fraud
detection, video analytics, IoT applications. Unfortunately, pro-
totyping and testing these applications is still a cumbersome
process for developers that usually requires an expensive testbed
and deep multi-disciplinary expertise, including in areas such
as networking, distributed systems, and data engineering. As
a result, it takes a long time to deploy stream processing
applications into production and yet users face several correctness
and performance issues. In this paper, we present stream2gym,
a tool for the fast prototyping of large-scale distributed stream
processing applications. stream2gym builds on Mininet, a widely
adopted network emulation platform, and provides a high-level
interface to enable developers to easily test their applications
under various operating conditions. We demonstrate the benefits
of stream2gym by prototyping and testing several applications
as well as reproducing key findings from prior research work
in video analytics and network traffic monitoring. Moreover,
we show stream2gym presents accurate results compared to a
hardware testbed while consuming a small amount of resources
(enough to be supported in a single commodity laptop even when
emulating a dozen of processing nodes).

I. INTRODUCTION

Stream processing applications have become prevalent in
industry over the last decade due to growing demands for
immediate decision-making upon massive scales of continu-
ously arriving data. Indeed, more than 80% of the Fortune
100 companies currently use some stream processing platform,
e.g., Apache Flink [1], Kafka Streams [2]. Modern stream
processing applications can comprise several components, in-
cluding processing engines, message brokers, and data stores,
and often target a distributed cluster of servers to provide
parallelism and replication in a scale-out model [3].

Despite the great success of the stream processing paradigm,
testing a distributed stream processing application (particularly
at scale) is still an intricate and often expensive process,
time and money-wise. On one hand, developers and operators
must cope with all challenges associated with deploying
a networked system (e.g., routing, addressing, monitoring).
On the other hand, they also need to rely on either costly
testbeds (usually a cluster of servers organized into a pre-
defined, i.e., fixed, topology) or complex cloud-based setups
for running their experiments. Ultimately, these challenges can
delay innovation, hide important software issues, and prevent
minority groups from contributing to the community [4].

Existing approaches for prototyping stream processing ap-
plications fall short in several aspects. For instance, testbed
environments (e.g., [5], [6]) can provide high-fidelity results,

but they tend to only support small-scale experiments and
require developers to instantiate complex distributed stream
processing platforms almost from scratch. Simulation tools
(e.g., [7], [8]) can easily scale to large systems, but they
cannot fully represent real applications due to their reliance
on computational models. Platform emulation can be a sweet
spot for both testbeds and simulators. However, none of the
current exemplars (e.g., [9]) focus on stream processing ap-
plications and thus require developers to deal with many low-
level details, including network configurations. Finally, a few
stream processing testing tools, e.g., [10], [11], are available
to developers. Nevertheless, they are mostly focused on unit
and integration testing and do not support the system level or
end-to-end analyses that complex data pipelines require.

To address these issues, we propose stream2gym, a flex-
ible and scalable prototyping environment targeted at stream
processing applications. stream2gym uses network emulation
to run real application code and provides a high-level API that
developers can adopt to easily specify complex data processing
pipelines. The tool supports a great set of monitoring tasks,
including bandwidth and latency reports as well as event logs,
and can be used to test applications under various operational
conditions (e.g., network loads, failure models). We imple-
mented stream2gym on top of a widespread network emula-
tor, and made it open-source under an Apache License [12].
The tool currently supports a rich set of platforms commonly
adopted in stream processing applications (e.g., Apache Kafka,
Apache Spark, MySQL), and can run reasonably large setups
(beyond 20 nodes) on a single commodity server.

In summary, our contributions are as follows:
• We design stream2gym, a modular, low-cost, and scal-

able prototyping environment for distributed stream pro-
cessing applications. stream2gym provides a high-level
API for developers to describe and test their data process-
ing pipelines without knowing any detail about the low-
level networked infrastructure. Ultimately, this decou-
pling simplifies application development and facilitates
the re-usability of testing scenarios.

• We implement stream2gym on top of Mininet [13], a
widely used network emulator, and make it open source.

• We deploy several applications using stream2gym and
test their behavior under a variety of operational condi-
tions, including different link delays as well as network
failures, to demonstrate the relevance of our tool.

• We use stream2gym to reproduce experiments from
published stream processing papers, including a video

analytics framework and a traffic monitoring system.
• We extensively evaluate stream2gym and show that it

can match testbed results almost exactly while scaling
to 10s of application components (e.g., message brokers,
data consumers) with mere 8% and 25% increase in CPU
and memory utilization, respectively.

II. BACKGROUND AND MOTIVATION

A. Stream processing applications
Unlike batch processing, stream processing applications

focus on real-time processing of a continuous stream of
data [3]. They are typically developed in the context of a
data processing pipeline, which may include data producers,
message brokers, processing engines, storage, logging, and
visualization stages. While the exact pipeline structure and
computational tasks (e.g., data queries) may vary across ap-
plications, common deployment scenarios involve an ensemble
of systems, combined together in a “system of systems”. For
instance, Uber’s data analytics infrastructure [14] combines
third-party tools such as Apache Kafka and Apache Flink
for event streaming and stream processing, respectively, with
their own customized workflow management solution. Meta
[15] and Google [16] also have similar assets. These systems
normally run on a distributed cluster of servers which relies
on high-speed networking for coordination.

B. Testing approaches
Prototyping and testing stream processing applications have

become a significant challenge for developers. In particular, the
scale, complexity, and real-time nature of these applications
pose stringent requirements on teams to identify and fix issues
before they reach out to production. Unfortunately, there has
been neither consensus about the best way to test a stream
processing application nor consolidated tools for this task.
However, the industry know-how in the area is vast and the
literature documenting previous efforts is growing slowly (see
Section VIII for more details).

Similarly to traditional software testing, developers must
look at the stream processing testing problem at different
granularities, including unit, integration, and system level
testing [17]. While unit tests are widely adopted in practice
and many stream processing systems may ship with their
own unit testing modules (e.g., Kafka test-utils [18], Flink
Spector [19]), integration and system testing are far less
explored and often force developers to rely on custom ad-
hoc solutions. A common technique for integration testing
is mocking. Mocking frameworks (e.g., Mockito [20]) can
imitate interactions among different components in a data
processing pipeline. However, they are neither suitable for
end-to-end, i.e., system level, testing nor offer control about
the underlying infrastructure (e.g., networking delays, failure
occurrences). We built stream2gym as a flexible and high-
level prototyping environment to fill these gaps.

III. stream2gym DESIGN

In this section, we describe the design goals, the overall
architecture, and the programming interface of stream2gym.

A. Design goals

We aim to build a flexible prototyping environment for
stream processing applications with the following design
goals:

Functional realism. It should faithfully mimic the function-
ality, scale and performance of production stream processing
systems while executing exactly the same code as in a real
deployment.

Topology flexibility. It should be easy to validate a stream
processing application in a variety of network topologies and
consider diverse operational conditions (e.g., route delays, link
bandwidths) and data processing pipelines.

Developer friendliness. It should be easy for software/data
engineers to test stream processing pipelines. This means no
involvement with the low level details of distributed frame-
works (e.g., network addressing/routing, platform interoper-
ability concerns).

Low cost. It should be inexpensive to run extensive experi-
ments, including testing (e.g., unit, integration, fault tolerance)
and reproducibility campaigns. In particular, we look for an
accessible alternative to the burdens of distributed testbeds
(e.g., equipment costs, waiting times) and multi-node cloud
setups (e.g., shared resources, vendor lock-in).

Achieving our design goals incurs a few challenges. First,
there are multiple running tasks (e.g., network switches, stream
processors, data loggers) that must be accommodated on the
same host. Second, some of these tasks must meet stringent
performance requirements to work properly. For example, a
broker replica must reply to periodic messages on time to
not be considered outdated by a leader node. Third, load can
be significantly unbalanced, meaning a few tasks (e.g., the
network control plane) may concentrate heavy load chunks.
Lastly, some application components may not be compatible
with each other off-the-shelf, meaning transparently connect-
ing them may require a proxy or wrapper code.

We address these challenges by i) carefully tuning sup-
ported systems to reduce their default resource usage and
thus increase the provided emulation scale. This includes,
e.g., adopting sampling techniques and reducing default buffer
sizes for data loggers and producers, respectively; ii) providing
an interface for users to also tune application components
according to their needs, including relaxing performance re-
quirements, e.g., timeouts, that may be too strict; iii) sup-
porting weighted resource allocation policies for emulated
hosts, meaning hosts running heavier load chunks can access
more resources; and iv) deploying wrappers to interface with
incompatible components.

B. Architecture and workflow

Figure 1 shows stream2gym’s architecture. The tool takes
as input a description of the emulation task containing: i) a
set of stream processors (e.g., Spark programs) specified by
the application developer and accompanied by sample input
data; ii) necessary configuration parameters (e.g., number of
message brokers, event topics, and stream processing engine
workers) for setting up the underlying stream processing

Emulated network

Stream processing pipeline

stream2gym

SPE
Data
store

Prod/cons
stubs

Event streaming platform

Task
description

User

Lo
g

g
in

g

V
is

u
al

iz
at

io
n

Topology

Visual representations

Platform
configuration

Data +
stream processors

Fig. 1: stream2gym architecture and workflow. SPE = Stream
Processing Engine.

platform, including its data stores, data producers, and message
brokers in case these are present; and iii) a desired network
topology to host the whole stream processing system. This
design separates the application logic from its testing setup
which enables re-using testing scenarios by modularly plug-
ging different stream processors.

stream2gym instantiates the specified topology using a
network emulator. Even though our tool focuses on single
computers, it can be run with minimal modifications on
distributed clusters (e.g., using [21] or [22]) if extreme-scale
is needed. Once the network is set, stream2gym starts an
event streaming platform to be used as a communication
media among different application components. This is a
common practice on current data processing pipelines (see
Section II-A). stream2gym then initializes the various com-
ponents that the specified application encompasses, which
may include stream processing engines (SPEs), data stores,
producer and consumer stubs, among others. Our tool provides
a repository containing standard producer/consumer stubs that
developers can use to quickly ingest data into or extract data
from stream processing pipelines according to desired patterns
(e.g., producing each line of a file or each file in a directory as
a data element). Also, each application component runs as an
independent process which enables them to be balanced and
prioritized among multiple cores in the underlying server.

To facilitate debugging, stream2gym triggers a series of
monitoring tasks that are responsible for logging relevant
information from both the network and the application per-
spective (e.g., bandwidth measurements, timestamped events).
Moreover, a visualization module presents a rich set of statis-
tics to the user, which includes per-port throughput, message
latency, and event ordering. Finally, stream2gym provides
several parameters that can be tuned to model various op-
erational conditions from production environments, including
several routing algorithms and failure profiles.

C. API

stream2gym provides a simple interface for modeling
stream processing pipelines in terms of data flows, task allo-
cations and network setups. The interface builds on GraphML

TABLE I: stream2gym attributes.

Graph attributes Description

topicCfg Topic configuration for the event streaming system
faultCfg Fault configuration (e.g., link down) for reliability tests

Node attributes Description

prodType Data source type (used for data ingestion)
prodCfg Data source configuration
consType Data sink type (used for data consumption)
consCfg Data sink configuration
streamProcType Stream processing engine type (e.g., Spark, Flink, KStream)
streamProcCfg Stream processing engine configuration
storeType Data store type (e.g., MySQL, MongoDB, RocksDB)
storeCfg Data store configuration
brokerCfg Message broker configuration
cpuPercentage Cap on overall system CPU usage

Link attributes Description

lat Link latency (in milliseconds)
bw Link bandwidth (in Mbps)
loss Link loss (%)
st Source port
dt Destination port

[23], a widely adopted XML-based language for specifying
generic graph structures and their node/link attributes. Table I
lists the attributes stream2gym supports, which can either
point to a configuration file or contain one or more user-
specified values. Software/data engineers have the flexibility
to specify any network topology or data flow graph they want.
In this case, stream2gym uses its integrated event streaming
platform to move data among network nodes based on a
publish/subscribe model.

Graph attributes. Users can define a list of topics on
which they want application components to produce/consume
data. In this sense, stream2gym assumes the use of a broker-
based messaging (or event streaming) system for transporting
messages between components. For each topic, the user can
also set a primary broker and a desired number of replicas.
stream2gym provides a convenient API for emulating various
failure scenarios, such as link failures, transient failures, and
system crashes, which are helpful to test the reliability aspects
of stream processing pipelines.

Node attributes. Network nodes can host several types
of application components, including data stores, producers,
consumers, message brokers, and stream processing engines.
Each of these components has an associated configuration file,
which contains component-specific parameters described as
a list of key-value pairs. The choice of modular component
configuration files makes it simpler to reuse component setups
among different prototyping scenarios. stream2gym also of-
fers the option for users to restrict the number of CPU cycles
from the underlying server a host can get. In this way, they can
easily allocate resources to the prototyping platform according
to the expected load.

Link attributes. stream2gym allows the configuration
of common communication channel parameters on emulated
links, including delay, bandwidth, and packet loss. In partic-
ular, the latter is useful for constructing more complicated
failure scenarios (e.g., gray failures [24]) as well as emulating
network congestion. Users can also determine the source and

Data
source

Broker
topic: raw-data

Data
sink

SPE - Job 1
Document word count

Broker
topic: words-per-doc

SPE - Job 2
Avg document length

Broker
topic: avg-words-per-topic

(a)

Data
source

Host 1
`Broker

Host 2
SPE
Job 1

Host 3 Host 4 Host 5
SPE
Job 2

Data
sink

(b)

Fig. 2: a) Example data processing pipeline; b) Target pipeline
allocation into the emulated infrastructure.

- - -
filePath : test-data.csv
topicName : raw-data
totalMessages : 1000
requestTimeout : 2000ms
bufferMemory : 32m
- - -

(a)

- - -
app : word-count.py
executorMemory : 1g
eventLog : true
- - -

(b)

Fig. 3: Example YAML configurations for the a) data source;
and b) word count components of the data processing pipeline
described in Figure 2a.

destination ports at which they want each link to be connected
to the respective hosts.

D. Example

Figure 2a shows an example data processing pipeline that
can be prototyped using stream2gym. This pipeline illustrates
a document analytics application [24] and comprises a data
source, which can read information from a file system or
database, two stream processing jobs, and a data sink. The
two stream processing jobs are responsible for counting the
number of distinct words in a document and calculating the
average document length based on their topic, respectively.
The pipeline uses a message broker to stream data between
processing and storage nodes, and each data migration happens
on a different topic (i.e., “raw-data” and “avg-words-per-
topic”). Figure 2b illustrates the target pipeline allocation
into the emulated infrastructure. Each component occupies a
separate server reflecting a common scenario in which service
providers adopt dedicated, i.e., specialized, clusters [25]. The
example also considers a “one-big-switch” abstraction [26] to
model the desired network setup, which simplifies its speci-
fication while still encompassing most of the communication
channel details (e.g., delay, bandwidth).

Figure 4 illustrates how to describe our example data
processing pipeline using stream2gym’s modeling language
(i.e., GraphML). We start by setting up the configuration of
stream2gym’s event streaming platform (line 3). Next, we
specify the configuration of each pipeline component (lines
6-24). Note that each host (i.e., node) follows the target

1 <!-- Data processing pipeline -->
2 <graph edgedefault="undirected">
3 <data key="topicCfg"> topics.cfg </data>
4
5 <!-- Cluster allocation -->
6 <node id="h1">
7 <data key="prodType"> SFST </data>
8 <data key="prodCfg"> data-src.yaml </data>
9 </node>
10 <node id="h2">
11 <data key="brokerCfg"> broker.yaml </data>
12 </node>
13 <node id="h3">
14 <data key="streamProcType"> SPARK </data>
15 <data key="streamProcCfg"> spe-1.yaml </data>
16 </node>
17 <node id="h4">
18 <data key="streamProcType"> SPARK </data>
19 <data key="streamProcCfg"> spe-2.yaml </data>
20 </node>
21 <node id="h5">
22 <data key="consType"> STANDARD </data>
23 <data key="consCfg"> data-sink.yaml </data>
24 </node>
25
26 <!-- Network setup -->
27 <node id="s1"/>
28 <edge source="s1" target="h1">
29 <data key="st"> 1 </data>
30 <data key="dt"> 1 </data>
31 <data key="lat"> 50 </data>
32 </edge>
 ...
53 </graph>

Fig. 4: GraphML description for the data processing pipeline
presented in Figure 2a. We omit some lines due to space
constraints.

resource allocation previously discussed. Finally, we specify
the networking setup for the communication channels between
hosts in the cluster (lines 27-32). We use separate YAML
files [27] to specify the configuration of each application
component. Figures 3a and 3b show two examples, which
depict the configuration of the data source (or producer) and
the word counting job of our example pipeline, respectively.

IV. IMPLEMENTATION

We implement stream2gym on top of Mininet 2.3.0 and
Apache Kafka 2.8.0. Our system comprises approximately
2.8K lines of Shell and Python code. We use Networkx 2.5.1
and Matplotlib 3.3.4 to parse topology specifications (ex-
pressed as GraphML files) and present data visualizations to
the user, respectively. stream2gym currently supports Apache
Spark 3.2.1 and MySQL 8.0.30 as example SPE and data store
components. The emulated network is proactively configured
using a lightweight switch control daemon (based on ovs-
ofctl) to bind the control plane overhead. We use OpenFlow
1.3 statistics to monitor network performance indicators (e.g.,
bandwidth consumption) and the Python logging facility1 to

1https://docs.python.org/3/library/logging.html

store relevant application events such as processing check-
points. For experimenting with our tool, we use one machine
equipped with an Intel® Core i7-3770 CPU @ 3.40GHz,
16GB RAM, and 2TB of storage. The server runs Ubuntu
20.04.4 LTS with kernel version 5.15.0-52-generic.

V. USE CASES

A. Testing stream processing applications

Testing stream processing applications is a significant chal-
lenge for software engineers. In particular, there are a few
unique aspects that make this task considerably harder com-
pared to traditional application testing. First, as described in
Section II-B, stream processing pipelines frequently involve
multiple components (e.g., messaging platforms, machine
learning training and inference systems, key-value stores),
which complicates end-to-end debugging. Second, recent
stream processing frameworks (e.g., [28]) often do not store or
even enqueue incoming data. While this design choice helps
to save memory for more pressing tasks (e.g., hosting a deep
learning model), it forces stream processors to compute queries
over samples and/or under tight latency constraints. As a result,
developers have to fully characterize performance boundaries
before the pipeline reaches a production environment which
involves experimenting with several configurations in a con-
trolled setup. Finally, streaming events can be out-of-order
due to both task and data parallelism (e.g., multi-threading,
distributed data ingestion) [29]. Ultimately, this makes query
outputs non-deterministic and requires extensive monitoring
and logging to identify anomalous behaviors.

stream2gym can assist developers to quickly prototype and
test their applications from an end-to-end perspective. Focus-
ing on integration and system level testing (i.e., testing multiple
system components and/or services interacting altogether), the
tool enables deploying complex data processing pipelines at
almost no cost. Moreover, its extensive monitoring and logging
capabilities provide a detailed analysis of the system behavior,
which can be used to speed up several debugging tasks.

To assess the effort required for prototyping a stream
processing application using stream2gym, we implemented
a large set of diverse applications on the tool. Table II
summarizes them. Number of components indicates how many
modules (e.g., stream processors, message brokers, key-value
stores) the application contains, while the features column
depicts specific features each application deploys. Due to space
constraints, we provide brief descriptions of each application
below. More information, including the exact data processing
pipeline, executed queries, and platform configurations can be
found in the public stream2gym repository [12].
Word count is a standard benchmarking application for

stream processing systems. It collects textual data from a
stream of files, splits it into words, and stores word frequencies
into another file. We implement text split and frequency count-
ing as separate stream processing jobs. Ride selection
leverages structured data (e.g., geographical coordinates, fare
values) from a stream of taxi ride information to compute the
best tipping areas in a city. The processed query includes a

TABLE II: Example applications deployed on stream2gym.

Application Components Features LoC

Word count 5 Multiple stream processing jobs 167
Ride selection 5 Structured Data, 142

Stateful Processing
Sentiment analysis 3 Unstructured Data 72
Maritime monitoring 4 Persistent storage 162
Fraud detection 5 Machine learning prediction 185

combination of join, groupby, and window operators, which
requires dealing with an intermediate state. Sentiment
analysis computes the subjectivity and polarity, two com-
mon natural language processing tasks [30], of each message
in a Tweet stream and thus involves manipulating unstructured
data. Maritime monitoring analyzes a stream of ship
tracking reports (e.g., AIS messages [31]) to count the number
of ships heading to a set of desired ports in a given time
window. Its data processing pipeline uses an external key-
value store, i.e., in addition to the one embedded in the stream
processing engine, to store the results. Fraud detection
runs a machine learning algorithm (SVM) to predict anomalies
in a stream of financial transactions.

Does stream2gym have tangible benefits? Testing is one
of the “main elephants in the room” when one talks about
stream processing applications, and we designed stream2gym
specifically to lighten this burden. In particular, there is no
need for developers to understand low-level networking con-
cepts, no upfront cost with infrastructure setup, easy platform
reconfiguration, and extensive monitoring capabilities, among
other advantages while using our tool. In our subjective
assessment (we make no claim of statistical significance),
using stream2gym indeed improved our productivity when
deploying stream processing tasks. First, it took us 10-100x
longer to deploy our example applications (see Table II) on
a hardware testbed, with software installations and network-
ing setup consuming most of our time (approximately two
days). Second, platform re-configurations, particularly those
involving new networking conditions such as changing link
delays or scaling up/down the cluster size, turned out to be
cumbersome and error-prone processes that included several
low-level parameter changes. Third, we had to manually
instrument code to identify the causes of latent issues on
hardware. For example, the event streaming system we used
in our experiments was silently discarding messages upon a
network partition (see Section V-B for more details), which
we later discovered had been observed in the literature before.
Finally, we had to run all our tests sequentially in the testbed
as each test required the whole set of servers reserved for our
experiments.

B. Emulating Networking Conditions

Varying link delay. Cloud organizations have increasingly
deployed geographically distributed services to reduce WAN
traffic originating from data transmissions and minimize query
response times. For example, many cloud providers use edge
servers to partially aggregate data streams from multiple users

25 50 75 100 125 150
Link delay (ms)

0.0

1.5

3.0

4.5

6.0

En
d-

to
-e

nd
 la

te
nc

y
(s

) Producer link
Broker link
SPE link
Consumer link

Fig. 5: End-to-end latency for the word count application when
varying the link delay to reach out to each of its components.
At each run, we increase the link delay of a single component
and keep the remaining ones at a very low value (<10ms).

(or IoT) devices before sending them to a data center for
analytics [32]. When transmitting aggregated data is still
prohibitive, providers tend to execute queries geo-distributedly
at the data generating sites [33]. The large variability of
WAN bandwidth and latency though (up to 10x in production
environments [34]) can directly affect the correctness and
performance of stream processing applications, making it
imperative for developers to fully understand the application’s
behavior under varying network delays. Unfortunately, running
a stream processing system in a real geo-distributed setup
is challenging. First, it may require provisioning resources
on several (edge) data centers and carefully crafting (or
observing) desired running conditions, e.g., high-link delays,
varying bandwidth. Also, it may not be possible to isolate the
application’s response to relevant events, e.g., a processing
stall, from that of co-located services such as a co-hosted
virtual machine.

stream2gym offers a simplified alternative to mock geo-
distributed environments. In particular, its scenarios can be re-
used and easily customized across different applications. To il-
lustrate these benefits, we evaluate our word count application
from Section V-A in a “one big switch” topology (i.e., similar
to the one depicted in Figure 2a) while systematically varying
the link delay for reaching out each application component.
More specifically, in each experiment, we increase the link
delay for communicating with a chosen host while keeping the
delay for the remaining ones at a very low value (<10ms).

Figure 5 shows the end-to-end latency for processing a
data unit (i.e., a text file) throughout the word count pipeline.
Each point depicts the average latency of over 100 files. As
expected, higher link delays impact the performance of all
application components. Interestingly, the impact was more
prominent when the data broker and the stream processing
engine (Apache Spark in this case) delays increase, up to 6x
worse for a link delay of 150 ms. This highlights the fact
that application components in a data processing pipeline may
have distinct networking requirements, and calls for a careful
allocation of infrastructure resources. In particular, the data

broker constantly communicated with all other components in
our experiment and therefore was more susceptible to poor
networking conditions.

Network partitioning. Failure analysis is another scenario
in which developers can benefit from using stream2gym, par-
ticularly network-partitioning failures. Recent studies indicate
that network partitions happen as often as once a week in
production networks and may take hours to repair [35]. Despite
software and data redundancy being widespread on current
stream processing systems, many of them still experience
silent catastrophic failures when a network partition happens
[36]. Reproducing, diagnosing, and hardening stream process-
ing systems against such failures can be rather complicated
due to the lack of proper tools. stream2gym can help to fill
this gap by allowing developers to quickly and flexibly inject
network-partitioning failures (e.g., after bringing network links
down) into distributed stream processing systems.

To illustrate stream2gym’s failure analysis capabilities, we
set up a mid-scale experiment involving replicated brokers
and concurrent data production/consumption in Apache Kafka.
More specifically, we use stream2gym to deploy the scenario
depicted in Figure 6a, where 10 message brokers are inter-
connected in a star topology and replicate messages produced
into 2 topics. Each end host also runs: i) a data producer that
randomly injects data into the two topics at a 30 Kbps rate; and
ii) a consumer that collects data from both topics. According to
our industry partners from the military sector, this is a common
setup in their networks and reflects a scenario in which all
tactical teams must remain operational (e.g., feeding historical
data to fresh members) even in case of a disconnection. To test
the system behavior under network-partitioned conditions, we
randomly disconnect the node hosting the leader broker for
one of the two topics for 120 seconds (approximately 20% of
the total experiment duration). We were able to deploy this
scenario in stream2gym in less than 250 lines of GraphML
and YAML code.

Figure 6b shows the data delivery matrix for the producer
that is co-located with the disconnected broker. Each cell
indicates whether a message was received by a given consumer
light color) or not (dark color). We can observe intermittent
losses for messages produced during the disconnection period
(dark vertical bars). Moreover, all lost messages come from
the topic whose leader got disconnected. This is in line with
previous results found in the literature [36] and is due to
the ZooKeeper (the distributed coordination service used by
Apache Kafka) data consolidation mechanism, which may
discard data (or pull it from an outdated log) during the
partition merging process after a re-connection. We were not
able to observe a similar behavior in the more recent Raft-
based Kafka [37].

In addition to message loss, we also measure the impact
of network partitioning failures on message latency, i.e., the
time for a published message to be available at a subscriber,
using stream2gym. Figure 6c shows the message latency at a
random consumer (all consumers present a similar behavior).
We classify messages according to their topic and order them

Host 10

Broker

ConsProd

(a) (b)

0 30K 60K 90K 120K
Message order

0

60

120

180

240

300

La
te

nc
y

(s
)

TA
TB

(c)

0 150 300 450
Time (s)

0

5

10

15

20

25

30

Tx
 t

hr
ou

gh
pu

t
(M

bp
s)

1

2

3

41

2

3

41

2

3

4

TA leader
TB leader
TA replica

(d)

Fig. 6: a) Evaluation setup for network partitioning analysis; b) Message delivery matrix for the co-located producer with a
disconnected broker. Y = Message delivered. N = Message not delivered; c) Message latency at a consumer. TA/TB = Topic
A/B; d) Sending throughput of designated hosts. Events of interest: 1© = TA leader disconnection. 2© = New leader election.
3© = Message backlog serving. 4© = Original leadership re-establishment.

based on their receiving time (older messages first). As we
can observe, there are two latency spikes throughout the
experiment, each affecting one of the topics. In both cases,
the increased latency stems from the message commit process.
For topic A (TA), whose leader got disconnected, all produced
messages are put on hold until a new leader is elected, which
then resumes accepting and delivering messages in place of
the disconnected broker. Topic B (TB), on the other hand,
only delays messages from the disconnected producer since
the leader broker is available at all times. In this case, the
disconnected producer tries to re-send messages until they
are either accepted or a timeout occurs, and excessively long
timeouts may incur on latency inflation.

We can also see the impact of network failures on the
required bandwidth. In particular, Figure 6d shows the sending
throughput of relevant hosts over time. After the disconnection
(1©), the TA leader stops serving requests and a replica
broker assumes its role. We then observe two spikes on the
required bandwidth: the first (2©) comprises the new leader
acknowledging and committing the backlog of messages that
were produced during its election process while the second
(3©) involves serving the same backlog to the subscribed
consumers. When the old leader reconnects, it eventually re-
assumes topic A leadership (4©) due to Kafka’s preferred
replica election mechanism [38].

C. Reproducing Research Work

This section details experiments we perform to reproduce
published stream processing research using stream2gym. Our
main goal is to show stream2gym can qualitatively match
the results generated on hardware by the original authors.
Moreover, we envision our tool to be a helpful asset for other
researchers to compare different proposals on similar ground.

Video analysis framework. In our first experiment, we
use stream2gym to reproduce results measured by Ichinose
et al. [39] to determine the performance of their proposed
stream processing framework for analyzing video data. The
framework comprises an event streaming cluster that transfers
videos collected from multiple cameras (data producers) to

a group of stream processing nodes (data consumers) that
will analyze the video frames according to user-specified
queries. As part of their evaluation, the authors investigate the
performance of the event streaming cluster when producing
frames to different numbers of consumers, all running on the
same server.

We replicate the experiment from Ichinose et al. using a
single end host that runs a data pipeline containing one broker,
one producer, and a varying number of consumers. Similarly
to the original paper, we use a single topic to ingest data
and produce a large number of MNIST images [40] before
the first consumer subscribes to the topic to avoid data stalls.
Figure 7a shows the transfer throughput (i.e., the rate at which
data consumers can collect frames from the streaming cluster)
for both stream2gym and the original paper as we vary the
number of consumers. We can see that stream2gym results
match those from Ichinose et al., showing an increase in the
transfer throughput up to 8 consumers (same number of cores
in the underlying host). Beyond that, increasing the number of
consumers does not cause a significant impact on the observed
throughput.

Traffic monitoring for enterprise networks. In our second
experiment we reproduce the results obtained by Ocampo et al.
[41] while evaluating the scalability of their stream processing-
based traffic monitoring system. The proposed system takes a
stream of network packets captured at different switches as
input and computes a set of relevant metrics (e.g., number of
active connections, bandwidth usage) on a windowed basis.
The authors use an event streaming platform to collect mir-
rored packets from switches and a stream processing engine
to compute the desired metrics. As part of their evaluation,
they assess how the proposed system scales as the number
of network users (i.e., traffic generators) increases. Each user
generates traffic to a pre-defined set of services (e.g., FTP,
Web, DNS) following a Poisson process.

We instantiate a scenario comprising a broker, a one-node
Spark cluster, and a varying number of producers mimicking
network users in stream2gym. As in Ocampo et al., traffic is
processed in slots of one second. Figure 7b shows Spark mean

1 2 4 8 16
Number of consumers

102

103

104

105

106
Th

ro
ug

hp
ut

 (
im

gs
/s

) stream2gym
Ichinose et al.

(a)

20 40 60 80 100
Concurrent users

1.0

1.2

1.4

1.6

1.8

N
or

m
al

iz
ed

 r
un

ti
m

e
(x

1)

stream2gym
Ocampo et al.

(b)

Fig. 7: Reproduced results for (a) Ichinose et al. [39] and (b)
Ocampo et al. [41] using stream2gym. Check Section VII
for details about the results magnitude variation.

execution time as we increase the number of network users,
normalized by the results obtained for 20 users. stream2gym
shows a similar increasing rate compared to Ocampo et al.,
with a bit more variation for large numbers of users (up to
20% for 100 users).

VI. EVALUATION

In addition to the use cases described in the previous section,
we also conducted an in-depth evaluation of stream2gym
performance. More specifically, we explore: i) how accurate
the tool is compared to testbed results (Section VI-B); and
ii) how much resources it requires for running reasonably
large experiments (Section VI-C). We start by describing our
evaluation setup in the next section.

A. Setup

We run our experiments in two different environments.
For stream2gym (i.e., emulation results), we use the same
environment described in Section IV while testbed results
were obtained using a 4-node cluster. The cluster has two 10-
core Intel Xeon Silver 4210R at 2.40 GHz with 32 GB of
memory and two 8-core Intel Core i7-9700 at 3.00 GHz with
16 GB of memory servers. The Xeon servers are equipped
with a 25 Gbps Mellanox BlueField SmartNIC [42] and run
Ubuntu 20.04.1 LTS while the Core i7 servers have a 40
Gbps Netronome Agilio LX SmartNIC [43] and run Ubuntu
18.04.6 LTS. All servers have hyper-threading disabled and
are connected to an Edgecore Wedge 100BF-32X switch with
Intel Tofino ASIC [44].

B. Accuracy

We now show stream2gym is accurate and can obtain
realistic results compared to a hardware testbed. Here we use
the word count application from Section V-A as a reference
workload and inject a stream of data (i.e., text files) into its
processing pipeline as quickly as possible. For the testbed
results, we run the stream processing engine (Apache Spark
3.2.1) and message broker (Apache Kafka 2.8.0) on the two
Xeon servers while the data producer and consumer execute
on the Core i7 ones. We adopt a public NTP server [45]
to synchronize clocks and perform latency measurements in
the cluster. Moreover, all measurements are collected after

25 50 75 100 125 150
Link delay (ms)

0

2

4

6

8

En
d-

to
-e

nd
 la

te
nc

y
(s

)

stream2gym
Hardware

(a)

25 50 75 100 125 150
Link delay (ms)

0

2

4

6

8

En
d-

to
-e

nd
 la

te
nc

y
(s

)

stream2gym
Hardware

(b)

Fig. 8: Comparison between stream2gym and testbed (i.e.,
hardware) results. Both environments run the word count
application described in Section V-A with varying a) broker
and b) SPE link delays.

a 60 seconds warm-up interval to initialize every application
component and configure the network routes.

Figure 8 shows the end-to-end latency of the word count
application as we vary the link delay of its message broker
(Figure 8a) and stream processing engine (Figure 8b) com-
ponents. We use tc to configure the link properties in the
hardware setup. As we can observe, the results match almost
exactly which demonstrates stream2gym correctness.

C. Resource usage

Next, we evaluate stream2gym scalability to large emula-
tions. For that, we set up the same scenario from Figure 6a
with a varying number of hosts (i.e., coordinating sites). Each
site produces data at a 30 Kbps rate. We then measure the CPU
and memory utilization of the underlying server by snapshot-
ting /proc/stat/ and /proc/meminfo/, respectively,
every 500 milliseconds. All measurements are collected after
a 60 seconds warm-up interval.

Figure 9a shows the cumulative distribution function (CDF)
of the CPU utilization for different numbers of coordinating
sites. Our analysis shows that the CPU utilization is reasonably
low (less than 60%) for the vast majority of time (more than
90%) even when we have 10 coordinating sites - each site
hosts a message broker, a data producer and a consumer. In
particular, most of the CPU demand stems from the system
setup, when stream2gym needs to initialize all application
components. We also investigate how quick the CPU utiliza-
tion grows as we increase the number of sites. In Figure 9b, we
plot the median CPU utilization for up to 10 sites. As we can
observe, stream2gym scales to 10s of application components
(each coordinating site has three components) with a minimal
8% increase in CPU usage. Moreover, the overall CPU demand
is low (around 10%) even for the largest scenario.

Finally, we analyze stream2gym memory consumption in
large-scale emulations. More specifically, Figure 9c shows
the peak memory usage of our tool for different numbers of
coordinating sites. We also consider two buffer sizes at data
producers (16 and 32 MB) in order to assess the impact of
application component configurations on the overall platform
resource consumption. This buffer size reflects the amount of
memory a producer reserves for queuing messages that are

0 20 40 60 80 100
CPU utilization(%)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

2 sites
4 sites
6 sites
8 sites
10 sites

(a)

2 4 6 8 10
of coordinating sites

0

3

6

9

12

15

M
ed

ia
n

CP
U

 u
sa

ge
 (

%
)

(b)

2 4 6 8 10
of coordinating sites

0

20

40

60

80

Pe
ak

 m
em

or
y

us
ag

e
(%

)

16 MB
32 MB

(c)

Fig. 9: a) CDF and b) median CPU utilization as we vary
the number of coordinating sites, i.e., hosts, for the scenario
described in Figure 6a; c) Peak memory usage for the same
scenario considering different buffer sizes on data producers.

waiting to be sent to a broker (e.g., if the producer is sending
messages faster than the broker can handle) [46]. We can see
that the required memory grows linearly as the number of
coordinating sites increases, yet the overall increment is low
(less than 25% in total in our experiment). Moreover, the buffer
size has a non-negligible impact on stream2gym’s memory
consumption (as much as 18% in our test), which indicates the
tool can be further optimized to accommodate bigger setups
depending on how flexible it is to configure an application
component. Likewise, we envision our tool can be used as a
playground for automatically tuning stream processing system
parameters [47]. We leave exploring both directions as future
work.

VII. DISCUSSION

Cloud-native setups. Container-based implementations of
stream processing pipelines have gained popularity over the
last years due to their improved management and scalability,
particularly if implemented in the cloud. stream2gym is
orthogonal to this approach and abstracts away the underlying
environment from the application developer as much as pos-
sible. Moreover, unlike current container orchestration tools
such as Kubernetes [48] which require users to configure the
hosting infrastructure (e.g., by setting up the physical servers
in the cluster), stream2gym can automatically provision
all the resources necessary for running a stream processing
application.

Infrastructure-as-code. Infrastructure-as-code (IaC) tools,
e.g., Terraform [49], Ansible [50], Puppet [51], enable

platform operators to manage their infrastructures via pro-
grammable configuration files. Ultimately, this facilitates the
provision of scalable environments, their versioning, and
patching. stream2gym draws inspiration from this idea to al-
low developers to describe and let others reproduce their setups
using a standard configuration file. However, unlike IaC tools,
the main purpose of stream2gym is application prototyping
and testing, for which it provides a set of targeted features
such as the emulation of specific networking conditions (e.g.,
packet drops, high link delays). Also, we leave integrating
support for importing/exporting IaC scripts in stream2gym
as future work.

Limitations. stream2gym can emulate diverse stream pro-
cessing scenarios fairly well and therefore facilitate research
comparison and dissemination as well as application testing.
However, a few limitations must be taken into account. Due to
its reliance on a network emulator, stream2gym is restricted
by the capabilities of the underlying host (or cluster of
servers). In particular, the server CPU must accommodate all
running components (i.e., message brokers, data producers,
stream processing nodes) which may impact accuracy in large-
scale setups. Also, although stream2gym enables collecting
meaningful performance results without setting up a hardware
testbed, absolute values may vary (e.g., as in Figure 7)
because of software limitations. For instance, current hardware
switches can be more than one order of magnitude faster than
software ones [52].

Other stream processing tools. Even though the current
stream2gym implementation supports a limited set of stream
processing tools, the high-level concepts presented in this
work (e.g., specifying end-to-end tests for stream processing
pipelines through a central configuration script) are generic
and applicable to many other platforms such as Apache
Flink or Kafka Streams. Likewise operators in orchestration
solutions [53], we envision modularly supporting additional
stream processing tools on stream2gym by adding support
for plug-ins, and leaving the definition of specific interfaces
as future work.

VIII. RELATED WORK

Network testbeds. PlanetLab [5], Emulab [6], CloudLab
[54] and Chameleon [55] are network testbeds providing large
numbers of machines and network links that can be program-
matically configured by users. Despite their high computa-
tional capabilities, they lack flexibility to customize topologies,
forwarding behaviors and metrics though. Moreover, they
require programmers to instantiate data processing platforms
(e.g., stream processing engines, messaging systems) from
scratch.

System simulation. NS-3 [7] and OMNeT++ [8] are pop-
ular simulators that enable users to model communication
networks, multiprocessors, and other distributed or parallel
systems. SimBricks [56] extends this concept and combines
multiple simulators using a customized synchronization proto-
col to model different system components (e.g., gem5 for host
simulation, FEMU for flash memories, NS-3 for networking).

Although these tools are fully flexible and scale well to large
systems, they cannot provide accurate functionality due to their
reliance on computational models rather than real software.

Emulation platforms. CrystalNet [9] is a cloud-based net-
work emulator targeting the emulation of large-scale networks
(thousands of devices). The tool focuses on the emulation of
the network control plane and does not support configuring
data plane parameters (e.g., link delay and bandwidth). Tur-
boNet [57] uses programmable switches to emulate both the
network data and control planes. However, it is limited by the
switch capabilities and thus cannot run end host applications
without requiring users to set up additional servers. Digibox
[58] is a prototyping environment for IoT applications. The
framework enables mocking several IoT devices (including
their communications). Closest to our work, Mininet [59] uses
containers to emulate software-defined networks, including
real applications running on end hosts. In common, none of
these tools focus on stream processing applications, leaving it
entirely to developers to deal with their deployment and testing
complexities.

Stream processing testing. There is limited work in testing
for stream processing applications. In addition to the efforts
described in Section II-B, Kallas et al. [29] propose a library
(DiffStream) for differential testing in stream processing sys-
tems. TRAK [10], on its turn, is a tool for testing the reliabil-
ity of event streaming platforms, particularly Apache Kafka.
Gadget [11] is a framework for benchmarking embedded data
stores on stateful stream processing engines. Karimov et al.
[60] and Chintapalli et al. [61] also propose benchmarking
tools for stream processing systems. Unlike stream2gym,
none of them provide end-to-end testing for complex stream
processing pipelines containing several application compo-
nents (e.g., stream processing engines, message brokers, data
stores).

IX. CONCLUSION

This work proposes stream2gym, a tool to facilitate the fast
prototyping of stream processing applications in a distributed
environment. stream2gym uses a network emulation platform
and a high level API to carry out the network and stream
processing setup on behalf of the application developer. We
present a detailed design, workflow, and implementation of
the proposed tool, and investigate its benefits in a number of
use cases including application testing and the reproducibility
of research work. Our evaluation shows that stream2gym
can provide accurate results compared to a hardware testbed
while using less than 10% of the underlying server CPU
even when emulating 10s of application components (i.e.,
message brokers, data producers, consumers). This work opens
up a new direction for the automated end-to-end testing
and configuration of stream processing pipelines. Moreover,
we made our contribution open source [12] to facilitate its
adoption by the stream processing community.

Acknowledgements. We would like to thank the anony-
mous reviewers for their valuable feedback. This research is
supported in part by NSERC under an Alliance Grant and CFI
under a JELF grant.

REFERENCES

[1] Apache flink: Stateful computations over data streams. Accessed:
2023-01-16. [Online]. Available: https://flink.apache.org/

[2] Apache kafka. Accessed: 2023-01-16. [Online]. Available: https:
//kafka.apache.org/documentation/streams/

[3] P. Carbone, M. Fragkoulis, V. Kalavri, and A. Katsifodimos, “Beyond
analytics: The evolution of stream processing systems,” in Proceedings
of the 2020 ACM SIGMOD International Conference on Management
of Data, ser. SIGMOD ’20. New York, NY, USA: Association for
Computing Machinery, 2020, p. 2651–2658.

[4] J. Mirkovic and P. Pusey, “User experiences on network testbeds,” in
Cyber Security Experimentation and Test Workshop, ser. CSET ’21.
New York, NY, USA: Association for Computing Machinery, 2021, p.
72–82.

[5] L. Peterson, A. Bavier, M. E. Fiuczynski, and S. Muir, “Experiences
building planetlab,” in Proceedings of the 7th Symposium on Operating
Systems Design and Implementation, ser. OSDI ’06. USA: USENIX
Association, 2006, p. 351–366.

[6] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,
M. Hibler, C. Barb, and A. Joglekar, “An integrated experimental
environment for distributed systems and networks,” in OSDI 02. Boston,
MA: USENIX Association, Dec. 2002, pp. 255–270.

[7] ns-3 network simulator. Accessed: 2023-01-06. [Online]. Available:
https://www.nsnam.org.

[8] Omnet++ discrete event simulator. Accessed: 2023-01-06. [Online].
Available: https://omnetpp.org/.

[9] H. H. Liu, Y. Zhu, J. Padhye, J. Cao, S. Tallapragada, N. P. Lopes,
A. Rybalchenko, G. Lu, and L. Yuan, “Crystalnet: Faithfully emulating
large production networks,” in Proceedings of the 26th Symposium on
Operating Systems Principles, ser. SOSP ’17. New York, NY, USA:
Association for Computing Machinery, 2017, p. 599–613.

[10] H. Wu, Z. Shang, and K. Wolter, “Trak: A testing tool for studying the
reliability of data delivery in apache kafka,” in 2019 IEEE International
Symposium on Software Reliability Engineering Workshops (ISSREW),
2019, pp. 394–397.

[11] E. Asyabi, Y. Wang, J. Liagouris, V. Kalavri, and A. Bestavros, “A new
benchmark harness for systematic and robust evaluation of streaming
state stores,” in Proceedings of the Seventeenth European Conference on
Computer Systems, ser. EuroSys ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 559–574.

[12] stream2gym code repository. [Online]. Available: https://github.com/
PINetDalhousie/stream2gym

[13] Mininet: An instant virtual network on your laptop (or other pc).
Accessed: 2023-01-16. [Online]. Available: http://mininet.org/

[14] Y. Fu and C. Soman, “Real-time data infrastructure at uber,” in Pro-
ceedings of the 2021 International Conference on Management of Data,
ser. SIGMOD ’21. New York, NY, USA: Association for Computing
Machinery, 2021, p. 2503–2516.

[15] G. J. Chen, J. L. Wiener, S. Iyer, A. Jaiswal, R. Lei, N. Simha, W. Wang,
K. Wilfong, T. Williamson, and S. Yilmaz, “Realtime data processing
at facebook,” in Proceedings of the 2016 International Conference on
Management of Data, ser. SIGMOD ’16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 1087–1098.

[16] A. Gupta and J. Shute, “High-availability at massive scale: Building
google’s data infrastructure for ads,” in Workshop on Business Intelli-
gence for the Real Time Enterprise (BIRTE), 2015.

[17] A. Vianna, W. Ferreira, and K. Gama, “An exploratory study of how
specialists deal with testing in data stream processing applications,”
in 2019 ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM), 2019, pp. 1–6.

[18] Testing kafka streams. Accessed: 2023-01-06. [On-
line]. Available: https://kafka.apache.org/20/documentation/streams/
developer-guide/testing.html.

[19] Framework for apache flink unit tests. Accessed: 2023-01-06. [Online].
Available: https://github.com/ottogroup/flink-spector.

[20] S. Mostafa and X. Wang, “An empirical study on the usage of mocking
frameworks in software testing,” in 2014 14th International Conference
on Quality Software, 2014, pp. 127–132.

[21] G. Di Lena, A. Tomassilli, D. Saucez, F. Giroire, T. Turletti, and
C. Lac, “Distrinet: A mininet implementation for the cloud,” SIGCOMM
Comput. Commun. Rev., vol. 51, no. 1, p. 2–9, mar 2021.

[22] Mininet cluster edition. Accessed: 2023-01-06. [Online]. Available:
https://github.com/mininet/mininet/wiki/Cluster-Edition-Prototype.

[23] The graphml file format. Accessed: 2023-01-06. [Online]. Available:
http://graphml.graphdrawing.org/.

[24] E. C. Molero, S. Vissicchio, and L. Vanbever, “Fast in-network gray
failure detection for isps,” in Proceedings of the ACM SIGCOMM 2022
Conference, ser. SIGCOMM ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 677–692.

[25] K. Hazelwood, S. Bird, D. Brooks, S. Chintala, U. Diril, D. Dzhulgakov,
M. Fawzy, B. Jia, Y. Jia, A. Kalro, J. Law, K. Lee, J. Lu, P. Noordhuis,
M. Smelyanskiy, L. Xiong, and X. Wang, “Applied machine learning
at facebook: A datacenter infrastructure perspective,” in 2018 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), 2018, pp. 620–629.

[26] N. Kang, Z. Liu, J. Rexford, and D. Walker, “Optimizing the ”one big
switch” abstraction in software-defined networks,” in Proceedings of
the Ninth ACM Conference on Emerging Networking Experiments and
Technologies, ser. CoNEXT ’13. New York, NY, USA: Association for
Computing Machinery, 2013, p. 13–24.

[27] The official yaml web site. Accessed: 2023-01-19. [Online]. Available:
https://yaml.org/.

[28] Y. Li, Y. Shen, and L. Chen, “Camel: Managing data for efficient
stream learning,” in Proceedings of the 2022 International Conference
on Management of Data, ser. SIGMOD ’22. New York, NY, USA:
Association for Computing Machinery, 2022, p. 1271–1285.

[29] K. Kallas, F. Niksic, C. Stanford, and R. Alur, “Diffstream: Differential
output testing for stream processing programs,” Proc. ACM Program.
Lang., vol. 4, no. OOPSLA, nov 2020.

[30] B. Liu, Sentiment Analysis and Subjectivity, 2nd ed. Chapman and
Hall/CRC., 2010.

[31] A. Harati-Mokhtari, A. Wall, and J. Wang, “Automatic identification
system (ais): Data reliability and human error implications,” The Journal
of Navigation, vol. 60, no. 3, pp. 373–389, 2007.

[32] D. Kumar, S. Ahmad, A. Chandra, and R. K. Sitaraman, “Aggnet: Cost-
aware aggregation networks for geo-distributed streaming analytics,” in
2021 IEEE/ACM Symposium on Edge Computing (SEC), 2021, pp. 297–
311.

[33] Q. Pu, G. Ananthanarayanan, P. Bodik, S. Kandula, A. Akella, P. Bahl,
and I. Stoica, “Low latency geo-distributed data analytics,” in Proceed-
ings of the 2015 ACM Conference on Special Interest Group on Data
Communication, ser. SIGCOMM ’15. New York, NY, USA: Association
for Computing Machinery, 2015, p. 421–434.

[34] B. Zhang, X. Jin, S. Ratnasamy, J. Wawrzynek, and E. A. Lee,
“Awstream: Adaptive wide-area streaming analytics,” in Proceedings
of the 2018 Conference of the ACM Special Interest Group on Data
Communication, ser. SIGCOMM ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 236–252.

[35] R. Govindan, I. Minei, M. Kallahalla, B. Koley, and A. Vahdat, “Evolve
or die: High-availability design principles drawn from googles network
infrastructure,” in Proceedings of the 2016 ACM SIGCOMM Conference,
ser. SIGCOMM ’16. New York, NY, USA: Association for Computing
Machinery, 2016, p. 58–72.

[36] A. Alquraan, H. Takruri, M. Alfatafta, and S. Al-Kiswany, “An analysis
of network-partitioning failures in cloud systems,” in Proceedings of the
13th USENIX Conference on Operating Systems Design and Implemen-
tation, ser. OSDI’18, 2018, p. 51–68.

[37] Apache kafka. Accessed: 2023-01-19. [Online]. Available: https:
//kafka.apache.org/31/documentation.html.

[38] N. Narkhede, G. Shapira, and T. Palino, Kafka: The Definitive Guide
Real-Time Data and Stream Processing at Scale, 1st ed. O’Reilly
Media, Inc., 2017.

[39] A. Ichinose, A. Takefusa, H. Nakada, and M. Oguchi, “A study of a
video analysis framework using kafka and spark streaming,” in 2017
IEEE International Conference on Big Data (Big Data), 2017, pp. 2396–
2401.

[40] L. Deng, “The mnist database of handwritten digit images for machine
learning research,” IEEE Signal Processing Magazine, vol. 29, no. 6,
pp. 141–142, 2012.

[41] A. F. Ocampo Palacio, T. Wauters, B. Volckaert, and F. De Turck,
“Scalable distributed traffic monitoring for enterprise networks with

spark streaming,” in ECCWS2018, the 17th European Conference on
Cyber Warfare and Security, 2018, pp. 563–569.

[42] Nvidia mellanox bluefield smartnic mode - winof-2 v2.50 -
nvidia networking docs. Accessed: 2023-01-19. [Online]. Avail-
able: https://docs.nvidia.com/networking/display/winof2v250/NVIDIA+
Mellanox+BlueField+SmartNIC+Mode.

[43] Agilio lx smartnics - netronome. Accessed: 2023-01-19. [Online].
Available: https://www.netronome.com/products/agilio-lx/.

[44] Intel® tofino™ series programmable ethernet switch
asic. Accessed: 2023-01-19. [Online]. Available:
https://www.intel.ca/content/www/ca/en/products/network-io/
programmable-ethernet-switch/tofino-series.html.

[45] pool.ntp.org: Ntp servers in canada, ca.pool.ntp.org. Accessed: 2023-
01-19. [Online]. Available: https://www.pool.ntp.org/zone/ca.

[46] Advanced kafka producer configurations. Accessed: 2023-
01-06. [Online]. Available: https://www.conduktor.io/kafka/
other-advanced-kafka-producer-configurations.

[47] M. Bilal and M. Canini, “Towards automatic parameter tuning of stream
processing systems,” in Proceedings of the 2017 Symposium on Cloud
Computing, ser. SoCC ’17. New York, NY, USA: Association for
Computing Machinery, 2017, p. 189–200.

[48] Kubernetes. Accessed: 2023-01-19. [Online]. Available: https:
//kubernetes.io/.

[49] Terraform by hashicorp. Accessed: 2023-01-19. [Online]. Available:
https://www.terraform.io/.

[50] Ansible is simple it automation. Accessed: 2023-01-19. [Online].
Available: https://www.ansible.com/.

[51] Puppet infrastructure and it automation at scale — puppet by perforce.
Accessed: 2023-01-19. [Online]. Available: https://www.puppet.com/.

[52] F. Dürr, T. Kohler et al., “Comparing the forwarding latency of openflow
hardware and software switches,” Fakultät Informatik, Elektrotechnik
Informationstechnik, Univ. Stuttgart, Stuttgart, Germany, Tech. Rep. TR,
vol. 4, p. 2014, 2014.

[53] Welcome to operatorhub.io. Accessed: 2023-01-19. [Online]. Available:
https://operatorhub.io/.

[54] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig, E. Eide,
L. Stoller, M. Hibler, D. Johnson, K. Webb et al., “The design and
operation of {CloudLab},” in 2019 USENIX annual technical conference
(USENIX ATC 19), 2019, pp. 1–14.

[55] K. Keahey, J. Anderson, Z. Zhen, P. Riteau, P. Ruth, D. Stanzione,
M. Cevik, J. Colleran, H. S. Gunawi, C. Hammock, J. Mambretti,
A. Barnes, F. Halbach, A. Rocha, and J. Stubbs, “Lessons learned from
the chameleon testbed,” in Proceedings of the 2020 USENIX Conference
on Usenix Annual Technical Conference, ser. USENIX ATC’20. USA:
USENIX Association, 2020.

[56] H. Li, J. Li, and A. Kaufmann, “Simbricks: End-to-end network system
evaluation with modular simulation,” in Proceedings of the ACM SIG-
COMM 2022 Conference, ser. SIGCOMM ’22. New York, NY, USA:
Association for Computing Machinery, 2022, p. 380–396.

[57] J. Cao, Y. Liu, Y. Zhou, L. He, and M. Xu, “Turbonet: Faithfully emu-
lating networks with programmable switches,” IEEE/ACM Transactions
on Networking, vol. 30, no. 3, pp. 1395–1409, 2022.

[58] S. Fu, H. Zhang, S. Ratnasamy, and I. Stoica, “The internet of things
in a laptop: Rapid prototyping for iot applications with digibox,” in
Proceedings of the 21st ACM Workshop on Hot Topics in Networks,
ser. HotNets ’22. New York, NY, USA: Association for Computing
Machinery, 2022, p. 24–30.

[59] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown,
“Reproducible network experiments using container-based emulation,”
in Proceedings of the 8th International Conference on Emerging Net-
working Experiments and Technologies, ser. CoNEXT ’12. New York,
NY, USA: Association for Computing Machinery, 2012, p. 253–264.

[60] J. Karimov, T. Rabl, A. Katsifodimos, R. Samarev, H. Heiskanen, and
V. Markl, “Benchmarking distributed stream data processing systems,” in
2018 IEEE 34th International Conference on Data Engineering (ICDE),
2018, pp. 1507–1518.

[61] S. Chintapalli, D. Dagit, B. Evans, R. Farivar, T. Graves, M. Holder-
baugh, Z. Liu, K. Nusbaum, K. Patil, B. J. Peng, and P. Poulosky,
“Benchmarking streaming computation engines: Storm, flink and spark
streaming,” in 2016 IEEE International Parallel and Distributed Pro-
cessing Symposium Workshops (IPDPSW), 2016, pp. 1789–1792.

