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Stream Processing Applications
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Stream processing applications have increased by 300% in 

the last decade.
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80% of the Fortune 100 companies currently use at least one 

stream processing platform.



Existing Testing Tools
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• Preoperatory testing modules.

• Stream processing application 

benchmarking.

• Testing specific quality attribute.

ESP = Event Streaming Platform,

SPE = Stream Processing Engine, DS = Data Store.
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• Preoperatory testing modules.

• Stream processing application 

benchmarking.

• Testing specific quality attribute.

• Not suitable for system testing.

• Setting up from scratch – network 

and application.

• Require advance expertise.

ESP = Event Streaming Platform,

SPE = Stream Processing Engine, DS = Data Store.
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What if developers could promptly 

test their application pipeline on a 

local, low-cost, large-scale setup?
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What if developers could promptly 

test their application pipeline on a 

local, low-cost, large-scale setup?

stream2gym



Outline

• Background

• Design

• Implementation

• Evaluation

• Conclusion
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Stream Processing Pipeline (1)
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• Applications are typically developed in context of data processing pipeline.

• Pipelines commonly consist of data sources, streaming platforms, engines, storage, 

and visualization.



Stream Processing Pipeline (2)
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• Data sources (producers) are the origin of data. 

• E.g. sensors, web servers, self-driving cars.



Stream Processing Pipeline (3)
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• Event streaming platform (ESP): transporter of data in the pipeline.

• Data or events are stored into different Topics.

000



Stream Processing Pipeline (4)
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• Stream processing engine (SPE): real time data analysis component.

• E.g. operations performed: joining, aggregation, filtering, windowing.



Stream Processing Pipeline (5)
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• Traditional consumers: storage and visualization components.

• Storage: persistent data storage, key-value store.

• Visualization component: dashboards.



Architecture & Workflow
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Architecture & Workflow
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• Input parameters

• Streaming application.

• Configuration parameters.

• Network topology.



Architecture & Workflow
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• Network instantiation over network 

emulator.

• Automatic mapping of brokers, data 

sources and sinks.

• ESP and SPE initiation.



Architecture & Workflow
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• Logging facility to monitor application 

and network.

• Visual representations of logged 

statistics.



API
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• Attributes

• Graph

• Node

• Link



Implementation
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• stream2gym implemented over Mininet.

• Currently supports

❑ Apache Kafka. 

❑ Apache Spark Structured Streaming.

❑ MySQL.

❑ Code Available 

(https://github.com/PINetDalhousie/stream2gym)

https://github.com/PINetDalhousie/stream2gym


Use Cases
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❑ Testing stream processing applications

❑ Emulating network conditions

❑ Varying link delay

❑ Network partitioning

❑ Reproducing research work

❑ Video analysis framework

❑ Traffic monitoring fore enterprise networks



Testing Stream Processing Applications
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• Data source/data sink

• Message brokers

• Training and Inference 

systems

• Key-value store (check project repository for application details)



Testing Stream Processing Applications
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Depicts specific features each

application deploys



Testing Stream Processing Applications
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• Deployed and tested five applications in stream2gym.

• Offers flexibility and efficiency.

Defines the application 

using stream2gym API



Emulating Networking Conditions
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Varying Link Delay

• Testing stream processing in geo-distributed setup 

is challenging.

• Easy customizations in topologies.

• Link delay increase for a single component.
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Varying Link Delay

• Testing stream processing in geo-distributed setup 
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• Easy customizations in topologies.
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Varying Link Delay

• Testing stream processing in geo-distributed setup 

is challenging.

• Easy customizations in topologies.
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Emulating Networking Conditions

277 March 2024

Varying Link Delay

• Higher link delays impact performance of all 

components.

• Data broker and stream processing engine are 

more sensitive to networking conditions.

• Due to higher communication frequency.

• Distinct networking requirements for each 

component.
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Varying Link Delay

• Higher link delays impact performance of all 

components.

• Data broker and stream processing engine are 

more sensitive to networking conditions.

• Due to higher communication frequency.

• Distinct networking requirements for each 

component.



Reproducing Research Work
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• Replicate research works from 

• Ichinose et al. [1] on video analysis framework.

• Ocampo et al. [2] on traffic monitoring of enterprise networks.

• In both cases, stream2gym matches original paper results by showing similar patterns.

• Network emulator overhead may affect results slightly.



Reproducing Research Work
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• Ichinose et al. [1]

• Video processing in real-time.

• Performance analysis of ESP in terms of 

increasing consumers.

• Throughput increases up to 8 consumers, 

then plateaus.
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• Ichinose et al. [1]

• Video processing in real-time.

• Performance analysis of ESP in terms of 

increasing consumers.

• Throughput increases up to 8 consumers, 

then plateaus.



Accuracy
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• stream2gym results match testbed results almost 

exactly.

• Conduct component wise series of experiments 

to confirm validity.



Resource Usage
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• Insignificant increase in memory usage even with 

larger setup (~25%).

• Buffer size at producers affects memory 

consumption significantly (~18%).

• Optimized parameter setup may accomplish 

scaled up topology accommodation.
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• Insignificant increase in memory usage even with 

larger setup (~25%).

• Buffer size at producers affects memory 

consumption significantly (~18%).

• Optimized parameter setup may accomplish 

scaled up topology accommodation.



Conclusion
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• Existing stream processing testing solutions face challenges in terms of providing end-to-end testing.

• stream2gym enables automated end-to-end testing by

• Facilitating high level API for application developers.

• Abstracting low level network infrastructure.

• Providing accurate result while consuming negligible resource.

• Working towards

• More stream processing tool adoption.

• Automatic parameter tuning.



Thank You

Email: monzurul.amin@dal.ca
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Questions
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