
NetGVT: Offloading Global Virtual Time Computation
to Programmable Switches

Ricardo Parizotto
UFRGS - Brazil

Braulio Mello
UFFS - Brazil

Israat Haque
Dalhousie University - Canada

Alberto Schaeffer-Filho
UFRGS - Brazil

ABSTRACT
Distributed discrete-event simulation is an essential method
for analyzing large-scale models, including weather forecast
and network simulations. A distributed simulation often re-
quires synchronizing state among the different parts of the
model according to a global virtual time (GVT). However,
existing approaches require multiple round-trip times to a
server to compute a newGVT value. In this paper, we propose
NetGVT, a system that computes GVT using programmable
switches, thereby avoiding the round-trip latency of a server-
based solution. In particular, our design is concerned with
two main constraints of the switch programming model: the
limited number of arithmetic and logic operations and the
limited memory available on the device. We aggregate com-
putations and unroll them across different pipeline stages in
a hierarchical manner to address the former. Then, we adopt
compression mechanisms to store a short representation of
virtual clocks in the on-chip registers to tackle the memory
limitations. We implemented a prototype of NetGVT and
evaluated its performance with a synthetic lock-step simula-
tion in a Tofino switch. Our results demonstrate that NetGVT
outperforms techniques that do not rely on in-network com-
puting by 40% in terms of distributed simulations completion
time.

CCS CONCEPTS
• Networks → Programmable networks; In-network
processing; • Computing methodologies→ Distributed
simulation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SOSR ’22, October 19–20, 2022, Virtual Event, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9892-3/22/10. . . $15.00
https://doi.org/10.1145/3563647.3563648

KEYWORDS
In-network Compute, Global Virtual Time, Data Plane

ACM Reference Format:
Ricardo Parizotto, Braulio Mello, Israat Haque, and Alberto
Schaeffer-Filho. 2022. NetGVT: Offloading Global Virtual Time
Computation to Programmable Switches. In The ACM SIGCOMM
Symposium on SDN Research (SOSR) (SOSR ’22), October 19–20,
2022, Virtual Event, USA. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3563647.3563648

1 INTRODUCTION
Large-scale distributed simulations play an essential role
in scientific research and many other domains, including
weather forecast [34], military training [15], large-scale sys-
tem design simulation acceleration (e.g., VLSI layout [7, 14]),
manufacturing and supply chains designs [36, 41], etc. Tra-
ditionally, different parts of a simulation model run on dis-
tributed servers or in a cluster and need to be periodically
synchronized to exchange timing information and establish a
global virtual time for consistent event processing [2]. Global
virtual time (GVT) [19] is an important aspect of perfor-
mance in these distributed simulations and works as a lower
bound on the simulation time. GVT computation must be
fast to avoid delaying event processing, which can nega-
tively impact the simulation completion time. Consequently,
the model outcome may delay warnings for natural but pre-
dictable events, e.g., hurricanes or other natural disasters.
Developers usually have two choices for synchronizing

simulations using GVT: a centralized server-based mecha-
nism to coordinate the computation or a decentralized syn-
chronization algorithm for application processes to perform
the computation on servers. Examples are the Chandy and
Misra Null-message protocol [8], the Granted Time Window
algorithm based on the Distributed Snapshot protocol pro-
posed by Mattern [32] and the Time Warp Mechanism [19],
which uses rollback to recover from causal consistency vio-
lations. However, these schemes impact the simulation com-
pletion time due to the RTT propagation delay and software
stack traverse latency while computing a new GVT value.
Server-only implementations may become a bottleneck for
synchronization because of the processing, buffering, and

16

https://doi.org/10.1145/3563647.3563648
https://doi.org/10.1145/3563647.3563648

SOSR ’22, October 19–20, 2022, Virtual Event, USA Ricardo Parizotto, Braulio Mello, Israat Haque, and Alberto Schaeffer-Filho

transmission operations [28, 37]. Even if GVT computation
is pushed to a server placed in an optimal location in the
network to minimize RTT, the delay will still be imposed
because of the server software stack.

Recent advances in programmable forwarding devices en-
able us to rewrite the behavior of switches using software
abstractions. Network programmability allows us to lever-
age switch hardware to process information at a rate that
outperforms the servers [28] and with a shorter propaga-
tion delay. One of the most popular languages for switch
programming is P4 [4], which allows modifying forwarding
device behavior. This motivated many emerging applica-
tions ([9, 22, 39, 40]) that offload parts of the computation
from servers to networks, achieving economies of scale and
lower operating costs. We argue that this modern comput-
ing paradigm creates the need and opportunity to revisit
synchronization algorithms for distributed simulations.
Different deployment scenarios can benefit from offload-

ing GVT synchronization to the network. For example, a
cloud provider can run an in-network GVT service for its ten-
ants that need to run simulations. Alternatively, an enterprise
can deploy switches near a server cluster incrementally to ac-
celerate existing simulations. Devising an in-network GVT
synchronization mechanism that relies on programmable
switches will reduce the propagation delay compared to a
server-based deployment. As such, it can speed up GVT
synchronization and accelerate large-scale distributed simu-
lations.

In this paper, we propose NetGVT, a system for performing
GVT computation using programmable data planes. NetGVT
introduces primitives for distributed simulation synchroniza-
tion that rely on emerging programmable switches to store,
compute, and deliver GVT values to applications running
on servers. Our design concerns two main challenges due to
the switch programming model: the limited ALU operations
available per stage and available memory on the device. To
solve the former, we aggregate computations and unroll them
across different pipeline stages when the computation ex-
ceeds the available ALU operations, judiciously resubmitting
packets to iterate through them. Since naively resubmitting
would impose additional overhead for packet processing, we
do it hierarchically, requiring only a logarithmic set of re-
submissions compared to the naive approach. To address the
limited amount of SRAM available to store virtual times, we
propose a compression mechanism capable of storing only
short bit-vector representations of a virtual time but still
ensuring correctness. Further, differently from existing in-
network computing systems [18, 21, 22], NetGVT captures
the essential notion of causality of logical clocks, which is
required for GVT computation and distributed simulation
synchronization.

Contributions. The main contributions of this paper can
be summarized as follows:

• We design a GVT computation protocol with function-
ality offloaded to programmable data plane devices.

• We implement a prototype with the in-network compo-
nent based on P4 for Tofino switches and a component
based on Python for running on servers hosting dis-
tributed simulation nodes.

• We demonstrate that by offloading the GVT computa-
tion to programmable switches, we can improve up to
40% in the job completion time of a lock-step simula-
tion.

2 BACKGROUND AND MOTIVATION
2.1 Distributed Simulations and GVT
A distributed simulation can be partitioned into a set of
processes (𝑃). Each process in 𝑃 can simulate an entire sim-
ulation component [30]. For example, a component can be
the physics of a hurricane or a gate from a circuit. During
the simulation, the GVT is required to synchronize these
components’ events [19]. It is used to measure progress and
define barriers to synchronization. The GVT is defined as
the minimum value among all local virtual times (LVTs) and
timestamps of all events in transit [19].

GVT=70

e01 e02 e03

e11 e12 e13 e14

e21 e22

LVT(P2) = 70

LVT(P1) = 88

LVT(P0) = 100

P0

P1

P2

Figure 1: An example ofGVTvalue in an event diagram.

Figure 1 presents, in an event diagram, a snapshot of three
different processes, 𝑃0, 𝑃1, and 𝑃2. An arrow represents a
message exchange between two processes, and its endpoints
consist of send and receive events. The GVT is then the min-
imum timestamp of the last event processed by all the pro-
cesses. In this example,𝐺𝑉𝑇 = 𝐿𝑉𝑇 (𝑃2) = 70, the timestamp
of event 𝑒22. Ideally, we want to have fast GVT computations
so that the simulation will be subject to less wait time to
order events.

The frequency at which GVT is computed depends on the
synchronization algorithm implemented by the distributed
simulator: it can be synchronous or asynchronous [23]. In
a synchronous algorithm, events are performed in a lock-
step manner [6]. Each event is processed only when its local

17

NetGVT: Offloading Global Virtual Time Computation to Programmable Switches SOSR ’22, October 19–20, 2022, Virtual Event, USA

virtual time meets the GVT, and all the distributed compo-
nents simulate the same virtual time. In an asynchronous
algorithm, the processes can simulate the component events
without a barrier in a lock-free manner [10]. However, this
may violate causal consistency, thus requiring checkpoint-
rollback mechanisms to restore the state of the processes and
resume from a state where there is no causality violation. In
the case of asynchronous simulations, GVT is used to define
the virtual time when a process should conduct a checkpoint.

2.2 Programmable Data Planes
Data plane programmability allows network operators to
define data plane functionality using software abstractions.
The switch functionality is often expressed using domain-
specific languages [4, 43] in a data plane model (e.g., TNA
or v1model) [16]. The resulting code is then compiled into a
packet processing architecture that supports the data plane
model. An example architecture is the Protocol Independent
Switch Architecture (PISA), which generalizes the Reconfig-
urable Match Table (RMT) [5] model.
In the PISA architecture, packets go through a packet

parser, which instantiates user-defined protocols. After the
parser processes a packet, it follows a pipeline of control
flows and match+action tables. Match+action tables can be
implemented on TCAM or SRAM, where actions are imple-
mented using ALUs and run at line rate [42]. Finally, packet
headers are emitted by a deparser. A packet can also be recir-
culated to the beginning of the pipeline or resubmitted to the
parser, imposing additional overhead to packet processing.
Recently, programmable data planes motivated the paradigm
of in-network computing.

2.3 Motivation
In-network computing (INC) [3, 40] relies on programmable
forwarding devices to offload computation into the network.
We aim to reduce server [28] and network bottlenecks and
increase the performance of GVT synchronization by lever-
aging programmable data planes and in-network computing
to offload the virtual time synchronization to programmable
switches. Our solution is an alternative to server-based syn-
chronization protocols. Offloading the GVT computation to
switches is beneficial for several reasons [44]. Firstly, per-
forming the computation as early as possible decreases net-
work traffic, reduces congestion, and cuts the number of
network hops at least by half to complete a GVT computa-
tion. Secondly, because the GVT computation computes the
minimum value of a set of events, simple arithmetic opera-
tions that run at a line rate with modern switch hardware
can be easily implemented. Finally, since the computation
on switches occurs at line rate, the switch can implement

the GVT comparison for an increasingly high number of pro-
cesses with no significant impact on processing delay. Thus,
the proposed NetGVT can speed up distributed simulations
running in data centers or clouds, which is common in the
distributed simulation field [12].

3 NETGVT
This section presents NetGVT, a system for performing GVT
computation using programmable data planes. The system
is capable of intercepting event messages and encapsulating
logical clocks in a custom protocol header, which is used by
switches to compute the logical clock barriers.

3.1 Challenges
Performing computation in programmable switches has
many advantages, including line rate processing and the re-
duction in propagation delay. However, there are fundamen-
tal challenges that need to be overcome to take advantage of
the switch computation for virtual time synchronization.
Limited set of ALU operations. There are restrictions

on which operations are allowed and how these operations
are performed. For example, the number of ALUs at each
pipeline stage is fixed. This creates a challenge if the pro-
gram’s layout requires more ALU operations than those
available in the pipeline stage [17]. Additionally, P4 does
not support loops, making it challenging to implement the
GVT computation considering the constraints of the switch
programming model. To overcome this challenge, NetGVT
unrolls the GVT computation using resubmission. However,
since using too many resubmissions can negatively impact
throughput, we judiciously use it by dividing multiple log-
ical clocks into hierarchical chunks and only traverse the
essential chunks for the required computation.
Limited amount of memory. Within a processing

pipeline, we use stateful registers to store logical clocks in-
side the switch. However, stateful registers consume SRAM
space, which is limited. Such constraints limit the number
of virtual clocks we can store in the switch at any point in
time. To overcome this challenge, we propose a compression
mechanism for virtual clocks that only needs to store an
absolute difference between the virtual clock and an integer
scalar. We periodically update the scalar to keep the mem-
ory demand low, ensuring that the absolute difference from
process clocks to the scalar can fit in short bit vectors.

3.2 Overview
The architecture of NetGVT, presented in Figure 2, consists
of multiple servers connected to a programmable switch and
an SDN controller.

18

SOSR ’22, October 19–20, 2022, Virtual Event, USA Ricardo Parizotto, Braulio Mello, Israat Haque, and Alberto Schaeffer-Filho

GVT Computation

L2/L3 Forwarding

...

 P4 Switch

Network
Controller

Propose D
el
iv
er

x86 Server x86 Server

Shim

intercept
event

read
gvt

Shim

intercept
event

read
gvt

Figure 2: NetGVT architecture overview.

Programmable switch. The switch is the main compo-
nent of NetGVT. Simulation processes exchange event mes-
sages, and the switch is responsible for intercepting packets
and storing a compressed version of their local virtual time
to compute a new GVT value. First, the switch intercepts and
processes a new protocol header that encapsulates virtual
clocks. Next, the comparisons required to determine the new
GVT are unrolled across multiple pipeline stages, subject to
ALUs constraints. Finally, the switch is responsible for send-
ing the resulting computed value to all servers participating
in the simulation using multicast primitives.
Shim layer. Existing distributed simulations often hard-

code the synchronization protocol and how simulation nodes
update their GVT. These protocols often operate over TCP,
but they do not consider any computation occurring in the
network. Instead, NetGVT provides a shim layer that resides
in simulation nodes and is capable of intercepting event mes-
sages and encapsulating the local clocks within a custom
protocol header to offload the GVT computation to switches.
SDN controller. Besides deploying simple forwarding

rules, the NetGVT SDN controller is responsible for updating
the switch when the set of servers in a cluster is modified
(addition/removal) or when there are changes in the set of
processes participating in a distributed simulation. When a
simulation starts, the logical clock of each process is reset to
zero. Finally, the controller is also responsible for configuring
multicast rules for delivering GVT values to all the servers.

3.3 Handling event messages
Distributed simulation processes execute events according
to a global virtual time. Consequently, processes must have
ways to read the current GVT before executing an event.
Additionally, after processing events, a process will have a
different local virtual time, possibly leading to a new GVT
value. Consequently, it is necessary to provide ways for the
simulation process to encapsulate these values so that the
NetGVT switch can intercept and process them.

Intercepting packets. The shim layer must intercept
event messages from distributed simulation processes. After
intercepting a message, the shim extracts the virtual time
of the process and encapsulates this information using a
custom packet header as shown in Figure 3. The custom
header added by the NetGVT shim layer is composed of the
following attributes:

• Type: denotes an operation, whether the packet is
proposing or delivering a new value, or starting a new
execution.

• Process ID (Pid): is the unique identifier of a process
and specifies the process that created a message.

• Value: stores a value to be exchanged between servers
and the network device. It can be a GVT or an LVT,
depending on the context of the operation.

These header fields are modified by the switch and by
shim layer instances during event message transmission. Fi-
nally, to maintain a common timing reference among the
distributed processes, the shim layer intercepts packets ar-
riving from switches and stores the new GVT.

ETH IP Type Pid Value

NetGVT header

Event Payload

Figure 3: NetGVT protocol packet format.

Packet losses. Although packet losses are uncommon
in a cluster environment, NetGVT employs a mechanism
for dealing with this loss. Because switches can not create
new packets, we delegate most tasks for dealing with packet
losses to the shim layers running on servers. The shim uses
timeouts and re-transmissions for detecting and recovering
from packet losses. The shim associates a timer to each pro-
posal. If the timer triggers a timeout, the system assumes a
packet was lost and retransmits it to the switch.

3.4 Data Plane Layout
Figure 4 presents the layout of the NetGVT switch data plane.
Upon receiving a packet, the switch checks whether it is an
event or standard forwarding packet. Standard forwarding
packets are forwarded normally to an output port, thus en-
abling our system to be incrementally deployable. This also
enables us to deploy NetGVT into existing distributed sim-
ulators without requiring us to change how event message
exchange occurs.

Updating virtual times. In the case of event packets, the
switch updates the respective LVT in a LVTList according to
the process identification. The LVTList can be implemented
either using match+action tables or as an array of on-chip
registers. The former would require interaction with the
control plane to update the list’s contents, imposing a control

19

NetGVT: Offloading Global Virtual Time Computation to Programmable Switches SOSR ’22, October 19–20, 2022, Virtual Event, USA

VTPiD

LVTList

0002

0003

...

T2

T1

...

... ...
Process Ports

MulticastTable

...

...

Pid_1_Port

Pid_2_Ports

Update
LVT

Compute
Min MulticastUpdate

GVT?
Pkt in

Yes

No

...

Pkt out

Mirror to

Processes

Programmable Switch

Figure 4: The layout of NetGVT switch data plane.

plane control-loop as part of the GVT computation. Thus, we
use the on-chip registers1; hence, we can easily update the
virtual time of each process without any interaction with the
control plane. However, registers consume precious SRAM
memory. We propose a compression mechanism that stores
only the absolute difference between the LVT and a scalar,
in order to keep SRAM memory usage low.

By periodically updating the scalar to a value close to the
processes LVT (e.g., the last GVT value), we ensure that the
absolute difference is a small integer that can fit in a small
bit vector. For example, in a scenario where the simulation
process time is 𝑡 = 100, 000 and the scalar is 𝑠 = 99, 070,
NetGVT only needs to store the difference 𝑑 = 930, which
can be represented with a bit vector of size 12, instead of
regular 32-bit integers.
Note that instead of updating all LVTs during a scalar

update, the NetGVT switch is able to detect when an LVT
update exceeds its scalar range. Specifically, the switch de-
fines a shadow scalar, based on the current GVT, which corre-
sponds to the scalar that is going to succeed the current one.
The switch then identifies any LVT that needs a new scalar
and uses the shadow one2. The remaining LVTs still keep
using the current scalar. Over time all LVTs will exceed the
current scalar range and converge to the shadow one, which
will then become the current scalar. Keeping the notion of
a shadow in addition to the current scalar avoids having to
update all LVTs at once in situations when the scalar needed
to change, at the cost of only two extra registers.
Computing the global virtual time. After updating

the LVT of the process, the switch will start computing the
GVT by iterating through other virtual times and calculating
the minimum value among all the LVTs. Figure 5 illustrates
how our design maps the GVT computation into the ASIC.
Given that the P4 language does not support loops, we unroll
GVT calculation as a set of if-else statements that iterate

1LVT slots are indexed by metadata loaded into a match+action table that
maps a PID to the correct register slot.
2Since these LVTs are on a different scale, we invalidate them by setting
up a bit in a bitmask. This does not affect the GVT computation accuracy
because it only occurs to processes that clearly are not the new GVT.

through the list of local virtual times. However, having a
large number of processes leads to a large number of local
virtual times. Consequently, the chain of if-else statements
may not fit in the pipeline width because it would require
more ALU operations than what is available in a pipeline. To
address this challenge, our design partitions the if-else chain
into different chunks, where each chunk is responsible for a
portion of virtual times. Assuming that 𝑛 virtual times are
partitioned into chunks of the pipeline width size, a naive
approach to computing the GVT is to use resubmissions to
iterate through all the chunks. This would enable a correct
computation by iterating through the list of virtual times,
even if the list is large. However, this approach still requires
𝑟 = 𝑛/𝑤𝑖𝑑𝑡ℎ = |𝑐ℎ𝑢𝑛𝑘𝑠 | = O(𝑛) resubmissions, imposing
additional overhead for packet processing. Thus, reducing
the number of resubmissions is necessary to get the best
throughput from the switch.

LVTs(P0,Pwidth)

Processing Stages

Chunks (0,c)

GVT

C
h
u
n
ks

 (
0
,c
)

...

resubmit
...

Stage log n

Recursion Tree

Level 1

... Level 2

Level
log n

Stage 1

unvisited
chunks

width

width

Figure 5: Mapping GVT computation to programmable
ASIC.

Judiciously using resubmissions. The insight to re-
ducing the number of necessary resubmissions is that we
can memorize the minimum value of each chunk computed
by previous events and only iterate through these mem-
orized values to compute the GVT. This avoids iterating
through all the virtual clocks by just looking at each chunk’s
local minimum value. We generalize our design to scenarios
in which iterating through the chunks’ minimum also re-
quires more ALU operations than what is available in a single
pipeline. We hierarchically create chunks of minimum values
of lower-level chunks and perform this process recursively.
The process of creating chunks will occur until the number
of operations required to compute the local minimum does
not exceed the amount of ALU operations available in the
pipeline.

Complexity analysis. As we can observe in Figure 5, the
process of mapping these operations to the pipeline can be
seen as a recursion tree, with the branching factor of𝑤𝑖𝑑𝑡ℎ.
Each node has at most 𝑤𝑖𝑑𝑡ℎ operations, which can run
at a line rate. In contrast, the next levels have more 𝑤𝑖𝑑𝑡ℎ
operations associated with each of the𝑤𝑖𝑑𝑡ℎ chunks, and so
on. The tree has height log𝑤𝑖𝑑𝑡ℎ (𝑛), and at the leaves is our

20

SOSR ’22, October 19–20, 2022, Virtual Event, USA Ricardo Parizotto, Braulio Mello, Israat Haque, and Alberto Schaeffer-Filho

0.4 0.5 0.6 0.7 0.8 0.9
Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

NetGVT
Baseline

Figure 6: Latency

212 213 214 215 216

Events
0

500

1000

1500

2000

2500

3000

3500

JC
T

(s
)

NetGVT
Baseline

Figure 7: JCT

2 4 8 16 32 64 128
of processes

0

10

20

30

40

50

60

70

Pe
rc

en
ta

ge
 %

Meter_ALU
SRAM
Logical_Table_id
MAP

Figure 8: % Resources

2 8 16 32 64 128
Processes

0
2
4
6
8

10
12
14
16

re

su
bm

iss
io

ns

NetGVT
Naive

Figure 9: # Resubmissions

base case, which has as the default 𝑛
𝑤𝑖𝑑𝑡ℎ

leaf chunks. Since
sometimes 𝑛

𝑤𝑖𝑑𝑡ℎ
can not fit in a single pipeline, we perform

the hierarchical process by dividing the entry size by the
pipeline𝑤𝑖𝑑𝑡ℎ at each recursion level. In level 𝑖 , we remove
⌊𝑛/𝑤𝑖𝑑𝑡ℎ𝑖−1⌋ − 1 chunks from the list of chunks the switch
needs to visit using resubmission. Computing a new GVT
value will require starting from a leaf node and resubmitting
until reaching the root chunk. In the worst-case scenario, the
amount of resubmissions is O(log𝑛) instead of O(𝑛) from
the naive approach. At that point, NetGVT will be able to
compute the current GVT value.
Delivering the GVT. After computing and saving the

new GVT value, the switch inserts this value in the packet
header and sends the packet to match the MulticastTable.
MulticastTable will create a copy of the packet with the
updated GVT for each shim instance and change the output
ports. Finally, all packets are forwarded to their destination.

4 EXPERIMENTAL RESULTS
In this section, we present the experimental results. Our
experiments focus on answering twomain questions: (i) How
does the performance of NetGVT compare to a server-only
solution; and (ii) How does NetGVT scale with different
workloads.

Experimental setup.We implemented the switch logic as
a P4-16 [4] program based on the TNAmodel in approximately
600 lines of code. The controller is a python program (∼40
lines of code). The P4 compiler generates an API that the
controller uses to modify the multicast groups and addresses
according to the mechanism described earlier. We developed
the shim layer in Python using Scapy (∼120 lines of code).
The source code is available in [1]. The experiments were
conducted in a testbed with two servers connected by a
Wedge 100BF-32X 32-port programmable switch with a 3.2
Tbps Tofino ASIC. Each server is an Intel(R) Xeon(R) Silver
4210R CPU @ 2.4 GHz, with 10 cores and 32 GB memory.

Workload.We run a microbenchmark that instantiates
one process at each server of our testbed. For the microbench-
mark, we configured the processes to repeatedly send propos-
als that update the GVT value and used tcpdump to measure
the latency. We compared our system to a server-only solu-
tion implemented with the same functionality as NetGVT.
We configured the server-only solution in one of the servers,

but instead of using the NetGVT switch, we used a simple
L2 switch to forward event messages to the central server.

Computation time.Wemeasured the latency to propose,
compute and deliver a new GVT value using both NetGVT
and the server-only solution. Figure 6 presents the CDF for
the latency with a sample of 1,000 GVT updates. This exper-
iment demonstrates that our solution consistently outper-
forms the server solution.We observed that the latency using
NetGVT is not higher than 0.65ms for 50% of the proposals.
Conversely, the server solution takes about 0.85s. This hap-
pens because NetGVT cuts a network hop avoiding a round
trip to a server solution.
Job completion time. To understand the impact of the

GVT computation time in a distributed simulation, we imple-
mented a lock-step (synchronous) simulation that executes
different amounts of events. In this simulation, the processes
keep a local virtual time (LVT) and only run the next event
when the LVT is less or equal to the current GVT; otherwise,
the process is locked. We measured the time to complete
the simulation and presented it in Figure 7. We can see that
for 4096 events, the server solution performs similarly to
NetGVT. However, as the number of events increases, we
observe that NetGVT can complete simulations considerably
faster than the server-only solution. This happens because
events that the GVT delays will start earlier when using
NetGVT. For example, instead of a process waiting 0.8 ms
for a new GVT value to start processing a new event, it will
wait instead for about 0.6 ms. As the number of events to be
processed in a simulation increases, this early start makes
a considerable difference. As part of ongoing work, we are
studying the integration of NetGVT with existing simulators,
such as NS-33 and NEST4.
Resource utilization.We evaluated resource consump-

tion of NetGVT on top of a simple L3/L4 forwarding switch
and configured NetGVT for an increasing number of pro-
cesses. Because we observed that the majority of simulations
NetGVT aims to deal with often require around 2-128 pro-
cesses [10, 35, 38, 45], we assumed this setup in our analysis.
In order to handle a total of 128 processes, we compare LVTs
of up to 8 processes (8 is the pipeline width) at each pipeline
stage and need up to 3 levels of chunks, incurring in a total
3https://www.nsnam.org/docs/models/html/distributed.html
4https://www.nest-simulator.org/

21

NetGVT: Offloading Global Virtual Time Computation to Programmable Switches SOSR ’22, October 19–20, 2022, Virtual Event, USA

of 2 resubmissions for updating the GVT. Differently from
the previous experiments that run on the testbed, we used
Intel P4 Insight for measuring resource consumption as the
number of processes increases (Figure 8). For 128 processes,
the virtual time storage increases the consumption of SRAM
and MAP RAM up to less than 10% of the memory available
in the switch. ALU consumption is close to 40%, and the
logical table ID to 20%.

Resubmission analysis. As mentioned earlier, NetGVT
may use resubmissions to enable the GVT computation. We
note that resubmission adds around 0.65 − 0.75 ns to latency
[46]. Figure 9 shows the number of resubmissions required by
the naive approach compared to NetGVT. For 128 processes,
NetGVT requires only two resubmissions; resubmitting adds
only 2 × ±0.7 ns to the latency of the scenario using only
two processes. Instead, the naive approach would need to
traverse all the 128 LVTs without optimizations, requiring
up to 16 resubmissions (considering a pipeline width of 8).
Thus minimizing the number of resubmissions is necessary
for the overall computation performance.

5 RELATEDWORK
Synchronization protocols. Fujimoto et al. [11] proposed a
GVT protocol for shared-memory processors. Their protocol
requires a round of communication for computing GVT since
there is no need for message exchange between processors.
Mattern [33] presented an algorithm for GVT computation
for distributed simulations. This algorithm uses a variant of
a distributed snapshot to compute the GVT value. However,
none of these works consider network programmability. The
most similar to our work is [37], which migrates the GVT
computation to a programmable NIC. Although using the
NIC avoids the overhead of the server software stack, this
approach still requires an entire RTT to estimate the GVT.
Differently, our work supports the GVT computation using
programmable data planes, thus avoiding the overhead and
latency of an end-to-end communication.

In-network computing. Research efforts have proposed
several solutions related to in-network computing, such as
in-network concurrency control [20, 31, 47]. Coordination
services [9, 18] offload the Paxos consensus protocol to the
network hardware in order to minimize exchanges with
servers. HovercRaft [27] uses programmable switches to
collect quorum and accelerate communication. Others run
vertical Paxos between switches to build a reliable storage
[21] or between servers to tolerate failures of network ap-
plications running on switches [26]. However, the purpose
of consensus is to make sure the same value is delivered
to all participants without any calculation in the switch to
decide which value should be agreed upon. Instead, NetGVT
performs the GVT calculation before returning it to servers.

Further, differently from these works, NetGVT captures the
notion of causality which is required for GVT computation.
Our work is also aligned with recent efforts that lever-

age the benefits of in-network computing to accelerate the
processing of scientific workloads for high-performance com-
puting. Kim et al. [25] presented NSinC, an architecture that
provides a closed control-loop for in-network acceleration of
scientific workloads and simulations. However, NSinC does
not focus on synchronization but instead enables telemetry
over scientific data using programmable data planes.
A related area of research is moving physical clock syn-

chronization to data plane devices. HUYGENS [13] improves
the synchronization of datacenter servers by moving it to the
NIC. Also, DTP [29] improves the synchronization bymoving
it to the physical network layer. Further, DPTP [24] leverages
high-resolution clocks available in programmable switching
ASICs to respond to physical synchronization queries en-
tirely in the data plane. Although keeping a reference to a
real clock in the data plane improves accuracy, the clock
skew of physical clocks would make it impossible to define
precisely if an event happens before another. Instead, virtual
clock synchronization ensures causal consistency, preserv-
ing the Lamport happens-before relation. We propose ways to
offload virtual time synchronization using logical clocks to
programmable switches to speed up distributed simulations.

6 CONCLUSIONS
Network programmability provides the opportunity for us to
make distributed simulations faster by offloading virtual time
synchronization functionality into the network hardware.
In this paper, we proposed NetGVT, a system that offloads
GVT synchronization into programmable switches. We pre-
sented our design and an evaluation of our prototype, and
showed the scalability of our solution. Our results demon-
strate that it is possible to offload the GVT computation to
programmable switches, promoting reduced time to com-
plete a simulation compared to techniques that do not rely
on network programmability. As part of our future work, we
intend to investigate how the placement of NetGVT switches
in the topology impacts the overall GVT computation time
to reduce even further the communication latency.

ACKNOWLEDGMENTS
We thank the anonymous reviewers and our shepherd Mar-
ios Kogias. We also thank Jennifer Rexford for her helpful
input which significantly improved the quality of this paper.
This work was financed in part by the Coordenação de Aper-
feiçoamento de Pessoal de Nível Superior - Brasil (CAPES) -
Finance Code 001, CNPq (grant #311276/2021-0), FAPERGS
(grant #19/2551-0001645-0) and FAPESP (grant #2020/05152-7
- PROFISSA, and grant #15/24494-8 - BigCloud).

22

SOSR ’22, October 19–20, 2022, Virtual Event, USA Ricardo Parizotto, Braulio Mello, Israat Haque, and Alberto Schaeffer-Filho

REFERENCES
[1] 2022. NetGVT. https://github.com/RicardoParizotto/p4app-NetGVT.
[2] Maleen Abeydeera and Daniel Sanchez. 2020. Chronos: Efficient spec-

ulative parallelism for accelerators. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems. 1247–1262.

[3] Theophilus A. Benson. 2019. In-Network Compute: Considered Armed
and Dangerous. In Proceedings of the Workshop on Hot Topics in Oper-
ating Systems (Bertinoro, Italy) (HotOS ’19). ACM, New York, NY, USA,
216–224. https://doi.org/10.1145/3317550.3321436

[4] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,
Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George
Varghese, and David Walker. 2014. P4: Programming Protocol-
independent Packet Processors. SIGCOMM Comput. Commun. Rev.
(2014).

[5] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McK-
eown, Martin Izzard, Fernando Mujica, and Mark Horowitz. 2013. For-
warding metamorphosis: Fast programmable match-action processing
in hardware for SDN. ACM SIGCOMM Computer Communication
Review 43, 4 (2013), 99–110.

[6] Joachim Breitner and Chris Smith. 2017. Lock-step simulation is child’s
play (experience report). Proceedings of the ACM on Programming
Languages 1, ICFP (2017), 1–15.

[7] Alisson V Brito, Harald Bucher, Helder Oliveira, Luis Feliphe S Costa,
Oliver Sander, Elmar UK Melcher, and Juergen Becker. 2015. A dis-
tributed simulation platform using HLA for complex embedded sys-
tems design. In 2015 IEEE/ACM 19th International Symposium on Dis-
tributed Simulation and Real Time Applications (DS-RT). IEEE, 195–202.

[8] K. Mani Chandy and Jayadev Misra. 1979. Distributed simulation: A
case study in design and verification of distributed programs. IEEE
Transactions on Software Engineering 5 (1979), 440–452.

[9] Huynh Tu Dang, Pietro Bressana, Han Wang, Ki Suh Lee, Noa Zil-
berman, Hakim Weatherspoon, Marco Canini, Fernando Pedone, and
Robert Soulé. 2020. P4xos: Consensus as a network service. IEEE/ACM
Transactions on Networking (2020).

[10] Ali Eker, Barry Williams, Kenneth Chiu, and Dmitry Ponomarev. 2019.
Controlled asynchronous GVT: accelerating parallel discrete event sim-
ulation on many-core clusters. In Proceedings of the 48th International
Conference on Parallel Processing. 1–10.

[11] Richard M. Fujimoto and Maria Hybinette. 1997. Computing Global
Virtual Time in Shared-Memory Multiprocessors. ACM Trans. Model.
Comput. Simul. (1997), 22 pages. https://doi.org/10.1145/268403.268404

[12] Richard M Fujimoto, Asad Waqar Malik, A Park, et al. 2010. Parallel
and distributed simulation in the cloud. SCS M&S Magazine 3 (2010),
1–10.

[13] Yilong Geng, Shiyu Liu, Zi Yin, Ashish Naik, Balaji Prabhakar, Mendel
Rosenblum, and Amin Vahdat. 2018. Exploiting a natural network
effect for scalable, fine-grained clock synchronization. In 15th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
18). 81–94.

[14] Elsa Gonsiorowski, Christopher Carothers, and Carl Tropper. 2012.
Modeling large scale circuits using massively parallel discrete-event
simulation. In 2012 IEEE 20th International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems.
IEEE, 127–133.

[15] Jo Erskine Hannay and Tom van den Berg. 2017. The NATO MSG-136
reference architecture for M&S as a service. In Proc. NATO Modelling
and Simulation Group Symp. on M&S Technologies and Standards for
Enabling Alliance Interoperability and Pervasive M&S Applications (STO-
MP-MSG-149).

[16] Frederik Hauser, Marco Häberle, Daniel Merling, Steffen Lindner,
Vladimir Gurevich, Florian Zeiger, Reinhard Frank, andMichael Menth.

2021. A Survey on Data Plane Programming with P4: Fundamen-
tals, Advances, and Applied Research. arXiv preprint arXiv:2101.10632
(2021).

[17] Mary Hogan, Shir Landau-Feibish, Mina Tahmasbi Arashloo, Jennifer
Rexford, and David Walker. 2022. Modular Switch Programming Un-
der Resource Constraints. In 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 22). 193–207.

[18] Zsolt István, David Sidler, Gustavo Alonso, and Marko Vukolic. 2016.
Consensus in a box: Inexpensive coordination in hardware. In 13th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 16). 425–438.

[19] David R Jefferson. 1985. Virtual time. ACM Transactions on Program-
ming Languages and Systems (TOPLAS) (1985).

[20] Theo Jepsen, Leandro Pacheco de Sousa, Masoud Moshref, Fernando
Pedone, and Robert Soulé. 2018. Infinite Resources for Optimistic
Concurrency Control. In Proceedings of the 2018 Morning Workshop on
In-Network Computing (NetCompute ’18).

[21] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun Lee, Robert
Soulé, Changhoon Kim, and Ion Stoica. 2018. Netchain: Scale-free sub-
rtt coordination. In 15th {USENIX} Symposium on Networked Systems
Design and Implementation ({NSDI} 18). 35–49.

[22] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate
Foster, Changhoon Kim, and Ion Stoica. 2017. NetCache: Balancing
Key-Value Stores with Fast In-Network Caching. In Proceedings of the
26th Symposium on Operating Systems Principles (SOSP ’17). ACM.

[23] Edimar Roque Martello Junior, Acacia Terra, Ricardo Parizotto, and
Braulio Mello. 2020. Closing the Gap Between Lookahead and Check-
pointing to Provide Hybrid Synchronization. In Anais do XLVII Sem-
inário Integrado de Software e Hardware. SBC, 104–115.

[24] Pravein Govindan Kannan, Raj Joshi, and Mun Choon Chan. 2019.
Precise Time-Synchronization in the Data-Plane Using Programmable
Switching ASICs. In Proceedings of the 2019 ACM Symposium on SDN
Research (San Jose, CA, USA) (SOSR ’19). Association for Computing
Machinery, New York, NY, USA, 8–20. https://doi.org/10.1145/3314148.
3314353

[25] Daehyeok Kim, Ankush Jain, Zaoxing Liu, George Amvrosiadis,
Damian Hazen, Bradley Settlemyer, and Vyas Sekar. 2020. Unleash-
ing In-network Computing on Scientific Workloads. arXiv preprint
arXiv:2009.02457 (2020).

[26] Daehyeok Kim, Jacob Nelson, Dan RK Ports, Vyas Sekar, and Srinivasan
Seshan. 2021. RedPlane: enabling fault-tolerant stateful in-switch
applications. In Proceedings of the 2021 ACM SIGCOMM 2021 Conference.
223–244.

[27] Marios Kogias and Edouard Bugnion. 2020. HovercRaft: Achiev-
ing Scalability and Fault-Tolerance for Microsecond-Scale Datacen-
ter Services. In Proceedings of the Fifteenth European Conference on
Computer Systems (Heraklion, Greece) (EuroSys ’20). Association for
Computing Machinery, New York, NY, USA, Article 25, 17 pages.
https://doi.org/10.1145/3342195.3387545

[28] Carson Kuzniar, Miguel Neves, Vladimir Gurevich, and Israat Haque.
2022. IoT Device Fingerprinting on Commodity Switches. In NOMS
2022-2022 IEEE/IFIP Network Operations and Management Symposium.
1–9. https://doi.org/10.1109/NOMS54207.2022.9789865

[29] Ki Suh Lee, Han Wang, Vishal Shrivastav, and Hakim Weatherspoon.
2016. Globally synchronized time via datacenter networks. In Proceed-
ings of the 2016 ACM SIGCOMM Conference. 454–467.

[30] Hejing Li, Jialin Li, and Antoine Kaufmann. 2022. SimBricks: end-to-
end network system evaluation with modular simulation. In Proceed-
ings of the ACM SIGCOMM 2022 Conference. 380–396.

[31] Jialin Li, Ellis Michael, and Dan RK Ports. 2017. Eris: Coordination-
free consistent transactions using in-network concurrency control. In
Proceedings of the 26th Symposium on Operating Systems Principles.

23

https://github.com/RicardoParizotto/p4app-NetGVT
https://doi.org/10.1145/3317550.3321436
https://doi.org/10.1145/268403.268404
https://doi.org/10.1145/3314148.3314353
https://doi.org/10.1145/3314148.3314353
https://doi.org/10.1145/3342195.3387545
https://doi.org/10.1109/NOMS54207.2022.9789865

NetGVT: Offloading Global Virtual Time Computation to Programmable Switches SOSR ’22, October 19–20, 2022, Virtual Event, USA

[32] Friedemann Mattern. 1989. Virtual Time and Global States of Dis-
tributed Systems. In Proc. Workshop on Parallel and Distributed Algo-
rithms, Cosnard M. et al. (Ed.).

[33] F. Mattern. 1993. Efficient Algorithms for Distributed Snapshots and
Global Virtual Time Approximation. J. Parallel and Distrib. Comput.
18, 4 (1993), 423–434. https://doi.org/10.1006/jpdc.1993.1075

[34] Paul Mazzurana. 2021. Weather Research and Forecast-
ing Model Workload Evaluation on IBM Cloud. https:
//www.ibm.com/cloud/blog/weather-research-and-forecasting-
model-workload-evaluation-on-ibm-cloud

[35] Alian Mohammad, Umur Darbaz, Gabor Dozsa, Stephan Diestelhorst,
Daehoon Kim, and Nam Sung Kim. 2017. dist-gem5: Distributed simu-
lation of computer clusters. In 2017 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS). IEEE, 153–162.

[36] Eiji Morinaga, Eiji Arai, and HidefumiWakamatsu. 2012. A Basic Study
on Highly Distributed Production Scheduling. In IFIP International
Conference on Advances in Production Management Systems. Springer,
638–645.

[37] Ranjit Noronha and Nael B Abu-Ghazaleh. 2002. Using programmable
NICs for time-warp optimization. In Proceedings 16th International
Parallel and Distributed Processing Symposium. IEEE, 8–pp.

[38] Joshua Pelkey and George Riley. 2011. Distributed simulation with
MPI in ns-3. In Proceedings of the 4th International ICST Conference on
Simulation Tools and Techniques. 410–414.

[39] Marcelo Pizzutti and Alberto E Schaeffer-Filho. 2019. Adaptive Multi-
path Routing based on Hybrid Data and Control Plane Operation. In
IEEE INFOCOM 2019-IEEE Conference on Computer Communications.

[40] Amedeo Sapio, Ibrahim Abdelaziz, Abdulla Aldilaijan, Marco Canini,
and Panos Kalnis. 2017. In-Network Computation is a Dumb Idea
Whose Time Has Come. In Proceedings of the 16th ACM Workshop on

Hot Topics in Networks (HotNets-XVI).
[41] Juan L Sarli, Horacio P Leone, and Ma De los Milagros Gutiérrez.

2016. Ontology-based semantic model of supply chains for modeling
and simulation in distributed environment. In 2016 Winter Simulation
Conference (WSC). IEEE, 1182–1193.

[42] Anirudh Sivaraman, Mihai Budiu, Alvin Cheung, Changhoon Kim,
Steve Licking, George Varghese, Hari Balakrishnan, Mohammad Al-
izadeh, and Nick McKeown. 2015. Packet transactions: A program-
ming model for data-plane algorithms at hardware speed. CoRR, vol.
abs/1512.05023 (2015).

[43] Haoyu Song. 2013. Protocol-Oblivious Forwarding: Unleash the
Power of SDN through a Future-Proof Forwarding Plane. In Pro-
ceedings of the Second ACM SIGCOMM Workshop on Hot Topics in
Software Defined Networking (Hong Kong, China) (HotSDN ’13). As-
sociation for Computing Machinery, New York, NY, USA, 127–132.
https://doi.org/10.1145/2491185.2491190

[44] Yuta Tokusashi, Huynh Tu Dang, Fernando Pedone, Robert Soulé, and
Noa Zilberman. 2019. The case for in-network computing on demand.
In Proceedings of the Fourteenth EuroSys Conference 2019. 1–16.

[45] Barry Williams, Ali Eker, Kenneth Chiu, and Dmitry Ponomarev. 2021.
High-performance pdes on manycore clusters. In Proceedings of the
2021 ACM SIGSIM Conference on Principles of Advanced Discrete Simu-
lation. 153–164.

[46] Dingming Wu, Ang Chen, TS Eugene Ng, Guohui Wang, and Haiyong
Wang. 2019. Accelerated service chaining on a single switch ASIC.
In Proceedings of the 18th ACM Workshop on Hot Topics in Networks.
141–149.

[47] Zhuolong Yu, Yiwen Zhang, Vladimir Braverman, Mosharaf Chowd-
hury, and Xin Jin. 2020. NetLock: Fast, Centralized Lock Management
Using Programmable Switches. In SIGCOMM.

24

https://doi.org/10.1006/jpdc.1993.1075
https://www.ibm.com/cloud/blog/weather-research-and-forecasting-model-workload-evaluation-on-ibm-cloud
https://www.ibm.com/cloud/blog/weather-research-and-forecasting-model-workload-evaluation-on-ibm-cloud
https://www.ibm.com/cloud/blog/weather-research-and-forecasting-model-workload-evaluation-on-ibm-cloud
https://doi.org/10.1145/2491185.2491190

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Distributed Simulations and GVT
	2.2 Programmable Data Planes
	2.3 Motivation

	3 NetGVT
	3.1 Challenges
	3.2 Overview
	3.3 Handling event messages
	3.4 Data Plane Layout

	4 Experimental Results
	5 Related Work
	6 Conclusions
	Acknowledgments
	References

