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ABSTRACT
Emergingacceleratednetworkdevices, includingSmartNICs (SNICs)
with general-purpose CPUs – such as ARM, create new sources of
queuing and processing delay in the hardware, network stack, and
application. We therefore argue for the need of a framework to mea-
sure the application and network stack performance in SNIC-based
host systems.

This paperdescribes ourmethodology tobuildup such framework
focusing on the regular Linux network stack executed on either host,
or SNIC CPUs. Our framework shows how SNICs impact end-to-end
latency, throughput, and multi-core scalability based on the SNIC
architecture, SNIC CPU performance, and even the applications
themselves.
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•Networks→Network performance analysis; •Hardware→
Networking hardware.
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1 INTRODUCTION
SmartNICs (SNICs), which are network interface cards (NICs) that
integrate programmable or reconfigurable processing units on their
own board, are becoming widely popular, counting several products
available on the market, including Fidus Sidewinder [30], Cavium
LiquidIO [4], Broadcom Stingray [2], andMellanox BlueField [20].
There is a renewed interest in the research community towards un-
derstanding what applications may benefit from being offloaded to
SNICs, with the goal of achieving higher compute capacity, lower
latency, reduced power consumption, etc.

SNICs add a certain degree of heterogeneity that may exacerbate
programmability within the host system. Ming et al.[17] considered
CPU-based and FPGA-based SNICs, and built a software framework
to ease their programmability. Microsoft Azure adopts FPGA-based
smartNICs to reduce applications’ network latencies, while introduc-
ing a software layer to ease programmability – as FPGAs are difficult
to program to non-experts [8]. Nevertheless, the use of FPGA-based
SNICs have been limited mainly to network function processing,
including NetFPGA [31]. To overcome the intrinsic difficulties of
FPGA-based SNICs, [9] adopts P4-enabled SNICs, where P4 cores
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relieve the server’s host CPU(s) from network-related workloads.
Similarly, [18] uses aMIPS based SNIC to offloadmicroservice-based
applications.

This paper focuses on general-purposeCPU-based SNICs because
they can be programmed with familiar programming languages and
run familiar software – even Linux, and advocates the need for a
portable framework that enables the end-to-end performance char-
acterization of SNIC systems. General-purpose CPU-based SNICs
are increasingly popular and have not been fully studied in the lit-
erature. Specifically, in the context of regular applications that run
atop a traditional operating system, like Linux, but are deployed on
SNIC CPUs vs host CPUs. Since SNIC CPUs are different than host
CPUs, and different SNICs adopt different hardware architectures, it
is important to characterize their end-to-end network performance
and compare that with what achievable on the host CPU. This will
enable system designers to answer all of a set of questions, including
what application should be moved (offloaded) from host to SNIC
CPUs, for higher capacity, lower latency, reduced power, etc. This
paper introduces our initial prototype of a portable software-only
framework for the end-to-end network performance characteriza-
tion of different SNIC, targetingwidely-used fully-fledged operating
systems, at themoment Linux. Such framework includes a collection
of (new and existent) microbenchmarks and applications, as well as
a measurement infrastructure.

Contributions.Thispapermakes twokeycontributions.First,we
introduce a collection of test programs, and a set of portablemeasure-
ment methodologies to characterize CPU-based SNIC performance,
which exposes both the architectural and quantitative difference of
SNICs. Our methodologies differ from previous ones [17] that use
kernel-bypass techniques, because we believe many operators wish
to deploy regular applications in CPU-based SNICs together with
an widely-used Linux system, and their interest is the end-to-end
performance that includes software overheads of both application(s)
and OS, rather than the performance with the minimum software
overheads based on custom, specialized applications orOSes (i.e., the
maximum achievable by the hardware, which can be extrapolated
in a product datasheet or based on previous studies).

The second contribution is a snapshot of the performance of popu-
lar SNICs currently available on themarket –which demonstrate the
portability of our framework.We examine BroadcomStingray PS225
andMellanox BlueField2, which adopt different architectures and
SNICCPUs, and indeed exhibit different performance characteristics.
Using our measurement methodologies, we found that the end-to-
endperformance is impactedby theSNICarchitecture, theSNICCPU
performance, but also by the applications themselves – even when
their logic seems similar, suggesting that deploying latency-sensitive
applications on SNIC CPUs requires careful evaluation.
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2 BACKGROUNDANDMOTIVATION
A smartNIC (SNIC) is a unique technologywhere a processing unit is
deployed into a network interface card (NIC). Such a processing unit
can be programmable, like a multicore CPU, or reconfigurable, like
an FPGA. Adding processing units to NICs enables a series of advan-
tages, including early packet processing, and offloading network-
related processing from the host processor to theNICCPU/FPGA [7],
and others [12]. In this paper, with the goal of reducing confusion,
wewill refer to traditionalNICswithout any programmable or recon-
figurable processing unit as regular NICs, while we will use the term
NIC generically to refer to the network interface hardware. Thus, in
our terminology, both SNIC and regular NIC integrate a NIC.

SNICs and regular NICs, as well as other high-bandwidth periph-
eral devices, including storage drives and video cards, are connected
to the host CPU via the Peripheral Component Interconnect Express
bus – PCIe. PCIe is the de-facto standard peripheral bus in the com-
puter industry, actively under development. It is a high-bandwidth,
low latency, low power serial bus, introduced in the 2000s [25], now
nearing its 5th generation. Today, PCIe generation 3 is the most
widely deployed, while a fewmachines with PCIe generation 4 are
already available on the market.

Transferring data via the PCIe bus has a non negligible per-
transaction cost. Hence, while convenient for large-data transfers,
small data-transfers have a cost in the µs scale [21] independently
of the size. Therefore, if a network application needs to make many
(small) data transfers through PCIe, it can be a good candidate to run
on SNIC, which may lead to a reduction of the PCIe overheads of
multiple data movements.

Running an application on SNICs CPUs has also other advan-
tages, in fact, far less energy is consumed due to the lower SNICs’
power consumption (limited by the PCIe bus at around 12𝑊 per
card). SNICs are already used to offload data-center services, like
distributed storage [12], freeing host CPUs from such overheads,
and increasing the server capacities of processing data-center’s cus-
tomers requests – that can be actually monetized, hence increasing
revenues. Moreover, applications running on a SNIC are isolated
from the applications running on the host CPU, so the system’s
administrators can provide SLA for certain services.

2.1 A Categorization of SmartNICs
Figure 1 shows several existent SmartNIC architectures. As men-
tioned already, SNICs may integrate general-purpose CPUs (e.g.,
ARM, MIPS) or FPGAs, while since quite a long time NIC’s ASICs
integrate special-purpose processing units (accelerators) for simple
packet-processing, including encryption/decryption or reassem-
bly [1, 23] (not shown in figure).

SNIC architectures can be categorized based on their processing
units’ connection to the actual network interface, i.e., based on the
network packet flow. Thus, similarly to [17], we discern SNICs with
on-path processing units from SNICs with off-path processing units,
and hybrids exist.

A SNIC with on-path FPGA is characterized by an FPGA-based
network interface, Figure 1a and Figure 1b; and includes low-level
network packet processing in the FPGA itself. However, the two con-
figurations are quite different. The first, which can be realized with
any Xilinx Zynq-based products (e.g., Fidus Sidewinder [30]) has an

Stingray BlueField2

CPU 8-core ARMv8 A72 (64bit) at 3.0 GHz 8-core ARMv8 A72 (64bit) at 2.5 GHz

Caches 16MB total cache (8MB L2 + 8MB L3) 1MB
L2 cache per 2 cores, 6MB L3 cache

Memory 16GB
Two channels on-board DDR4-1600

16GB
Two channels on-board DDR4-1600

Network IF 10/25GbE, RoCE 25/50/100GbE, RoCE

Host IF 8x PCIe Gen 3 16x PCIe Gen 4

Table 1: Technical specifications of the SNICs used in the
experiments (Broadcom Stingray PS225, and Mellanox
BlueField2).

on-path FPGA and an off-path CPU. The FPGA directly interfaces
with theEthernet network and alsowithPCIe, in principle, providing
all traditional NIC’s functionalities. The second has an FPGA placed
before the actual network interface – the FPGA can provide services
instead of the host machine, faster. Microsoft Catapult project imple-
mented this configuration [5]. Figure 1c and Figure 1d depict a SNICs
with an off-path CPU and with an on-path CPU. Examples of the
first are the Broadcom Stingray [2] and the Mellanox Bluefield [20],
while the Liquid IO [4] is an example of the latter. Note theMellanox
Bluefield can also be configured such as in Figure 1d. Independently
of the architecture, all such SNICs are being used in an increasing
number of research works [3, 8, 9, 11, 13, 15, 17, 19, 27, 29, 31].
2.2 Research Question(s)
Clearly, SNICswithanon-pathCPUorFPGA,Figure1dandFigure1b
respectively, provide the lowest latencies in network packet/request
processing when compared to the same processing executed on the
host CPU due to the proximity to the network interface – this has
been shown in different publications, including [17, 24, 27, 28].More-
over, FPGA-based SNICs, such as the architectures in Figure 1a and
in Figure 1b, have been studied extensively in the literature [3, 14, 31]
demonstrating faster processing for specific applications. Only a
few works have been published about off-path SNICs [27], whose
full performance advantages are still not clear, especially when com-
pared to the host network latencies (and achievable bandwidths),
nor contrasted between models. Moreover, as the number of SNIC
products is increasing, a portable way to easily characterize them
may be beneficial for the community.

3 RELATEDWORK
Themost related and complementary SNIC-based performance char-
acterization isdescribed in [17],where theauthors characterized four
different SNICs fromMarvell, Broadcom, and NVIDIA/Mellanox (in-
cluding on-path and off-path configurations) to understand benefits
and challenges of deploying distributed applications such as key-
value stores. However, such performance characterization doesn’t
provide an in-depth analysis of the latencies and bandwidths, nor
their benchmarks are portable, which are the targets of our work.
Recently, Liu et al. [16] come up with a fairly complete network
and compute characterization of a specific SNIC, the BlueField-2.
Differently, our work is a more in-depth and portable – applicable
to all CPU based SNICs, characterization of the networking latency
and contrasts them for different SNICs.

Hardware latencies, specifically PCIe, of NICs have been studied
by several works, most noticeably by Neugebauer et al. [21]. Such
work has been carried on in the context of FPGA-based SNICs, and
although it is not portable, it is complementary to our analysis –
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Figure 1: Several existent SmartNIC architectures.
which also aims at highlighting PCIe costs, but we don’t focus on
that, instead we look at the end-to-end numbers for SNICs and host
CPUs, while comparing them.

Finally, a large amount of works explored what workloads are
more suitable to run on SNICs. For example, the authors of [26] de-
ployed an FPGA-based SNIC to accelerate the performance of a key-
value store database application (memcached). Qiu et al.in [22] pro-
vided a tool for predicting the performance offloaded task into FGPA-
based SNIC. Firestone et al.proposes to offload networking in a virtu-
alized environment into SNICs. In [6], a P4-enabled SNIC is adopted
for severalapplicationssuchasKV-store,webserver, and image trans-
former, where the SNIC is equipped with hundreds of RISC cores.

4 CHARACTERIZATION FRAMEWORK
Our goal is to build a software-only, portable (i.e., run on any SNIC
with a traditional OS, like Linux, BSD,Windows, etc. without kernel
modifications) SNIC performance characterization framework. Our
measurement methodology for Linux is based on eBPF to identify
the cost of different kernel subsystems during network request pro-
cessing. In the current prototype, we take timestamps at least at the
syscall interface and at the bottom of the network stack, as close to
hardware as possible – using tc-eBPF. Since eBPF is under develop-
ment forWindows and FreeBSD, we believe a similar methodology
will be feasible in the near future.

We use the regular Linux network stack in our measurement, and
this is a stark contrast to the existing work [17], which employs
kernel-bypass techniques like DPDK and RDMA. This is because we
expect SNIC CPUs usually run Linux and its network stack in reality,
as it implements various network protocols and features that many
kernel-bypass network stacks do not implement, such as tunneling
protocols, TCP extensions, filters and queuing disciplines.

We develop microbenchmarks, including UDP-based echo client
and server that implement our simple timestamp-based measure-
ment protocol. In addition, we collected widely-used production
applications such asMemcached, Redis, and a Function-as-a-Service
(FaaS) runtime – OpenLambda, as well as corresponding workload
generators. While this is a work in progress, we are planning to
open-source the current prototype upon paper acceptance.

5 EXPERIMENTS
Theuse of SNICs could impact latency-critical applications or scenar-
ios due to SNIC architecture and embedded CPU processing inside
the SNIC. We set out to test these effects using our SNIC testbed
and measurement tools described earlier. We run microbenchmarks
to measure microscopic network data behavior; we then run real-
application benchmarks to see end-to-end latency and efficiency of
the SNIC CPUs.

100 GbE switch Regular machine

Bl
ue

Fi
el

d2

St
in

gr
ay

C
X4

L

host CPU

SNIC CPU

100GbE eth

PCIe Gen3

SNIC machine

Figure 2: The SNIC Testbed. Details in Section 5.1.

5.1 Experimental Setup
Hardware:We use a pair of machines (Figure 2). The SNIC machine
is equipped with two Xeon Gold 6230R CPUs. It installs a Mellanox
ConnectX-4 LxMT27710 100GbENIC (CX-4Lx), BroadcomStringray
PS225 25GbE SNIC (Stingray) andMellanoxBlueField2 100GbE SNIC
(BlueField2); details of these SNICs are summarised inTable 1. Unless
otherwise stated, we configure BlueField2 in the on-path mode. The
other machine, which we call regular machine, is equipped with a
Xeon Silver 4110 CPU and installs a Mellanox ConnectX-4 MT27700
100GbE NIC (CX-4). All the NIC ports connect to a 100GbE Ethernet
switch with a breakout cable for the Broadcom 25GbE SNIC.
Software:Weinstall theLinux5.4 kernel optimized forperformance,
which disables various debugging supports, retpline and netfilter, in
all the hosts; embedded CPUs of Broadcom PS225 run Linux kernel
4.14.79 and those of BlueField2 SNIC run the Linux kernel 5.4; both
areprovidedby thevendors.All theNICsdisable interruptmitigation
to optimize for latency.

5.2 Basic End-to-End Latency
To see the effect of SNICs on the packets that traverse them,wewrote
custom echo server and client programs that run on host or SNIC
CPUs. Since queues form in various stages in the host network stack
and SNIC, it is crucial to measure latency with bursts of packets. Our
client thus sends one ormoreUDPdatagrams in a batch andwaits for
the packets echoed by the server. These programs use sendmmsg()
and recvmmsg() tominimize the context switches.We run the client
and server programs in either the SNICmachine or regular machine.

Table 2 shows RTTsmeasured at the client; we discuss thememcd,
Redis and Lambda columns later. RTTs between the host CPUs over
different NICs are similar (18.22–18.73µs and 22.42–23.99µs for 64B
and 1024B datagrams, respectively) when CX-4Lx or Stingray is
used (first and second rows) in the SNICmachine. This is reasonable
because Stingray adopts the off-path architecture (Figure 1). When
the client or server runs in Stingray’s SNIC CPU (third row), RTT is
slightly longer (17.69–18.66µs for 64B datagram and 24.05–24.73µs
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NIC Clie. CPU 64B [µs] 1KB [µs] memcd
64B [µs]

memcd
(1KB) [µs]

Redis
(64B) [µs]

Redis
(1KB) [µs]

Lambda
(64B) [µs]

Lambda
(1KB) [µs]

CX-4Lx host 18.22 (18.42) 23.28 (22.42) 28.36 (25.58) 28.87 (25.85) 40.84 (38.32) 41.10 (38.51) (3330) (3792)

Stingray host 18.73 (18.31) 22.37 (23.99) 27.68 (26.49) 28.37 (27.62) 43.09 (38.65) 43.36 (40.18) (3384) (3756)
Stingray SNIC 17.69 (18.66) 24.05 (24.73) 29.05 (29.14) 31.91 (30.48) 43.69 (37.38) 46.50 (39.01) (2519) (3253)

BlueField2 host 21.13 (20.40) 23.02 (22.02) 29.26 (27.53) 29.91 (28.04) 44.13 (40.24) 45.47 (44.86) (3415) (3794)
BlueFIeld2 SNIC 39.15 (45.80) 41.85 (49.13) 67.78 (70.71) 73.25 (75.81) 77.01 (80.33) 83.68 (88.70) (4242) (4280)

Offpath-
BlueField2

host 19.57 (19.45) 21.60 (21.38) 28.28 (27.11) 29.14 (27.85) 43.71 (39.49) 45.20 (39.80) (3351) (3787)

Offpath-
BlueField2

SNIC 37.94 (46.21) 39.10 (49.79) 67.22 (55.56) 69.54 (60.64) 82.87 (67.11) 77.16 (67.91) (4211) (4274)

Table 2: RTTs between the client and server applications. Numbers in parentheses are RTTs when the client and server are
reversed.

for 1024B datagrams), because the SNIC CPU is slower than the host
CPU.

The results with BlueField2 SNICs highlights the architectural
implication of the on-path SNICs. When the server runs on the host
CPU of the SNIC machine (fourth row), RTT is longer than those
over the other NICs, because the traffic ismediated by the SNICCPU.
On the other hand, RTT increases even when the client or server
runs in the SNIC CPU (fifth row) and thus the distance to the output
port is shorter. This is likely because the SNIC CPU is slow. In addi-
tion, we observe significant RTT difference depending whether the
SNIC CPU runs the client (39.15–41.85µs) or server (45.80–49.13µs)
program. Figure 4 shows latency results with different packets sizes.
We take a closer inspection of the CPU times spent in the SNIC soft-
ware in the later section. We also ran the tests with BlueField2 in the
off-path mode (the last two rows), and observe lower latency than
the on-path cases. Those results confirm that the impact of the SNIC
architecture or configuration.

Figure 3a shows RTTs over increasing numbers of the batch size
for 1472B packets; Figure 3b shows those for the opposite request
direction. Since packets are queued at various places such as the NIC
queues and PCIe bus, RTT increases with the batch size. BlueField2
SNIC CPUs clearly exhibit higher RTT increase. This can be again
explained by the on-path architecture of SNIC.

5.3 Latency Breakdown
To shed light on the software and hardware overhead inside SNICs,
we measure the breakdown of the end-to-end latency using times-
tamps taken fromseveral vantagepoints and embedded in thepacket:
TX system call (1) and low-level packet output routine (2) in the echo
client kernel, low-level packet input routine (3) and output routine
(4) in the echo server kernel, low-level packet input routine (5) and
RX system call (6) in the echo client. Therefore, for example, we can
derive the time elapsed in the echo client’s network stack for TX and
RX from (2) - (1) and (6) - (5), respectively.

We use tc-eBPF to take a timestamp at the low-level packet out-
put and input routine and embed it in theUDPpacket payload, except
for the kernel running on a Stingray SNIC CPU; since the supported
kernel version is too old, we directly patched the device driver.
Software overheads: Table 3 shows the RTT, software overheads
and time spent in hardware for a 1024B packet.When the echo client
runs in the Bluefield2 SNIC CPU (the bottom row) or the echo server
does so (numbers in parentheses), the end-to-end latency is much
higher than other cases, because the performance of the SNIC CPU
is low and thus results in long processing delay in the SNIC. The

NIC CPU Clie. Serv. HW RTT [µs]

CX-4Lx host 3.7 (3.3) 4.0 (3.2) 15.6 (16.1) 23.3 (22.6)

Stingray host 5.5 (3.4) 4.1 (3.3) 14.3 (15.7) 23.9 (22.4)
Stingray SNIC 9.2 (3.4) 4.1 (7.7) 11.4 (12.9) 24.7 (24.0)

BlueField2 host 3.1 (3.1) 4.0 (2.8) 15.9 (17.1) 23.0 (23.0)
BlueField2 SNIC 22.5 (3.4) 4.1 (16.0) 22.5 (22.5) 49.1 (41.9)

Table 3: Software overheads, hardware time and RTT
between the echo client and server for a 1024B message.
Numbers in parentheses are times when the client runs in the
regular host and the server runs in SNIC machine.

Stingray SNIC CPU (third row) also exhibits higher software over-
heads than the host CPU, but lower than the Bluefield2 SNIC CPU.
Hardware overheads: We can derive the time spent (mostly) in
hardware, including theNICs andwire, fromRTT and software over-
heads measured above. The Stingray SNIC exhibits lower hardware
time with the SNIC CPU (24.7−4.1−9.2=11.4µs) than the host CPU
(23.9−5.5−4.1= 14.3µs), which matchesour expectation, because
the SNIC CPU resides closer to the physical ports than the host CPU.
On the other hand, the Bluefield2 SNIC shows longer hardware time
with the SNIC CPU (22.5µs) than the host CPU (15.9µs). Those re-
sults indicate the importance of themeasurement, because the actual
performance on SNICs can differ from the intuition based on the
hardware architecture, such as on-path or off-path SNIC CPUs.

Figure 4 plots RTT with smaller packets, and as shown in the
bottom parts, software overheads are high in SNIC CPUs, similar to
the 1024B packet cases.We alsomeasured on the BlueField2with the
off-path configuration, but did not observe significant difference.

Finally, we analyze communication latency between the host and
SNIC CPUs inside the host system (SNIC machine), measured using
the same sendmmsg()/recvmmsg() programs. Figure 3c plots that
latency for different batch sizes. BlueField2 exhibits higher latency,
which appears to be mainly due to the slow SNIC CPU.

5.4 Application Performance
What is the application performance on SNICs? We chosen mem-
cached and Redis, popular in-memory key-value stores, because
those applications incur reasonable software overhead to implement
application-level communicationprotocoloverUDP(memcached)or
TCP (Redis), consistency guarantee using locking and request parser,
in addition to their data structures (e.g., hash tables). We further ex-
amine an HTTP server executed in OpenLambda [10] as a serverless
function.We thus believe those applications are suitable to character-
ize the impact of latency caused by different SNIC architectures on
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(a) Latency

(b) Latency in reverse directions.

(c) latency between host and SNIC CPUs inside the SNICmachine.

Figure 3: RTTwith different batch sizes.

end-to-endperformance. It should benoted that bandwidth demands
of those applications never exceed the physical link capacity.

As before, we set off our experiment by simple RTT measure-
ment with continual back-to-back requests. In Table 2, “memcd”,
“Redis” and “Lambda” columns showRTTs of memcached, Redis and
OpenLambda, respectively. To be consistent with the other columns
discussed earlier, when those applications run on the SNICmachine,
numbers are represented in parentheses as they are servers; for exam-
ple,whenmemcached runson theStingrayCPU in theSNICmachine
and its client runs in the regular machine, RTT with 64B messages
is 29.14µs, and when memcached runs in the regular machine, RTT

Figure 4: RTT with various packet sizes. Bottom parts
indicate software overheads. Off-path BlueField2 means the
off-path CPU configuration.

with the same message size is 29.05µs. We do not run OpenLambda
in the regular machine.

memcached andRedis useset requests for a 64B and 1024Bobject,
and OpemLambda uses an HTTP request. For memcached and Re-
dis, except for BlueField2 SNIC CPU cases, results are unsurprising,
addingmoderate (less than 10µs) latency to the simpler echo applica-
tions.TheBlueField2SNICCPUcasesareworthnoting.Their latency
can be roughly two (Redis) or three (memcached) times higher than
the same application running on the host CPUs. OpenLambda la-
tency is dominated by the serverless framework overheads, which
are orders of magnitude higher than memcached or Redis. Our re-
sults indicate a caveat of running applications in SNIC CPUs, which
is to incur high latency even in an unloaded situation, and the degree
of latency penalty can largely differ depending on the application.

We further extendourexperimentwithparallel requests. Figure5a
and Figure 5b plot throughput and average latency of memcached
that runs in the SNICmachine, respectively. We issue 1000 set re-
quests in parallel. The server uses a single host or SNIC CPU core,
whereas the client uses all the eight CPU cores to avoid being satu-
rated. Throughput with the Stingray SNIC CPU is close to that with
the host CPU (Figure 5a), but with much higher latency (Figure 5b)
particularly for small objects. This indicates that the Stingray core
is almost saturated at those request rates (i.e., arriving requests are
queued); data movement itself is not a bottleneck, as the degree of
latency increase from the host CPU cases declines when the object
sizes increase. BlueField2 SNIC CPU exhibits very low throughput
with larger degrees of latency increase than Stingray cases. This
further confirms the possibility of unpredictable high latency caused
by “offloading” applications to SNICs, which would jeopardize the
whole service, because memcached is typically used as a latency-
critical component of a larger task (e.g., generating a response to the
web client).

Figure 5c plots Redis throughputwith 15parallel TCPconnections
or requests. As in memcached, the BlueField2 SNIC CPU exhibits
the lowest throughput by large margins. Also, even when the host
CPU is used, throughput is relatively low due to its on-path SNIC
architecture. On the other hand, Stingray SNIC highlights the weak-
ness of its SNIC CPU, demonstrating around half of the throughput
compared to the host CPU. Interestingly, this was not the case in
memcached (Figure 5a). This observation further confirms that the
impact of SNIC CPU could differ depending on the applications.
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(a) Memcached throughput.

(b) Memcached latency.

(c) Redis throughput.

Figure 5: Redis andMemcached performance.
Finally,wemeasure the throughput and latencyof anHTTPserver

executed in theOpenLambdaserverless frameworkbasedoncontain-
ers and plot the results in Figure 6. Since we have already observed
high serverless function software overheads earlier in this section,
we focus onmulti-core scalability. In the experiment, the client (wrk)
issues parallel HTTP requests or TCP connections, whose ratio is
100 × the number of server cores. The throughput increases and
latency decreases when more server cores are used. As a notable ob-
servation, for throughput, ARM cores on SNIC exhibits significantly
lower multi-core scalability compared to x86 cores on the host.

Figure 6: Throughput (top) and latency (bottom) of an
HTTP server executed as an OpenLambda serverless
function. X axis is the number of CPU cores.

6 CONCLUSIONAND LESSONS LEARNED
This paper advocated the need for a measurement framework for
Linux host systems equipped with CPU-based SNICs. Since we be-
lieve that many users wish to use a matured, feature-rich Linux
network stack with regular socket APIs, we specifically focus on the
performance on in-kernel network stack in SNICs. This is a stark
contrast to existing work that characterizes the performance on
SNICs with kernel-bypass network stacks [17]. We designed and
implemented a framework using a custom network application and
eBPF, and found the following SNIC performance characteristics:
• SNIC CPU performance can impact the end-to-end latency by a
factor of two.

• Off-path CPUs do not always result in lower latency to and from
the host CPUs.

• Even between similar applications, the degree of performance
impact by SNICs can largely differ.

• Multicore-scalability of the application can be impaired when
ARM SNIC CPUs are used.
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