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Abstract—5G networks enable emerging latency and band-
width critical applications like industrial IoT, AR/VR, or au-
tonomous vehicles, in addition to supporting traditional voice
and data communications. In 5G infrastructure, Radio Access
Networks (RANs) consist of radio base stations that communicate
over wireless radio links. The communication, however, is prone
to environmental changes like the weather and can suffer from
radio link failure and interrupt ongoing services. The impact is
severe in the above-mentioned applications. One way to mitigate
such service interruption is to proactively predict failures and re-
configure the resource allocation accordingly. Existing works like
the supervised ensemble learning-based model do not consider
the spatial-temporal correlation between radio communication
and weather changes. This paper proposes a communication
link failure prediction scheme based on the LSTM-autoencoder
that considers the spatial-temporal correlation between radio
communication and weather forecast. We implement and evaluate
the proposed scheme over a huge volume of real radio and
weather data. The results confirm that the proposed scheme
significantly outperforms the existing solutions.

Index Terms—5G, RAN, failure prediction, LSTM, Autoen-
coder.

I. INTRODUCTION

Emerging networking applications like industry 4.0, in-
telligent transportation, smart health system, AR/VR, etc.,
demand high network bandwidth, high reliability, and low
communication time [1]. Mobile and wireless devices from
these applications usually communicate over radio links and
form various types of networks like mesh, sensor, or cellular
[2]. Specifically, fifth-generation (5G) cellular networks aim to
support the above emerging applications with different service
level objectives (SLOs). For example, Mobile Broadband
(eMBB), ultra-Reliable Low Latency (uRLLC), and massive
Machine Type Communication (mMTC) offer enhanced band-
width (e.g., AR/VR), low latency (e.g., autonomous vehicles),
and low-power massive machine-to-machine communication
(e.g., industry 4.0), respectively. Unlike 4G networks with
large and high-power cell towers to reflect signals over long
distances, a 5G network consists of cells with a small coverage.
Specifically, 5G uses millimeter-wave (mmWave) spectrums
(between 24GHz and 100GHz) [3] that can travel over short
distances; thus, 5G RAN needs to deploy a dense collection
of base stations compared to 4G.

However, the use of mmWave frequency is affected by the
weather conditions. The mmWave radio frequency suffers from
frequency-dependent absorption, refraction, and scatter while
passing through the atmosphere and free-space, which causes

distortions in the amplitude and phase of signals [3], [4]. Thus,
the parameters of signals from the radio antenna of a 5G base
station can attenuate to cause the unavailability of the channel
transmission. Both water and wind can affect mmWave, e.g.,
a strong wind can create atmospheric vibration and attenuate
key performance indicator (KPI) parameters [5].

Thus, a 5G-based system for emerging IoT applications
must carefully incorporate such weather impacts on mmWave
to be robust against weather fluctuations. We can think of dif-
ferent design approaches like using learning based algorithms
[6], [7] or Reconfigurable Intelligent Surfaces (RIS) [8]–[10].
The former application layer solution can complement the
RIS-based scheme deployed in the lower layer of the protocol
stack (see further discussion in Section V-D). However, we
focus on designing a learning-based scheme in this paper as
such a scheme is proven to be efficient in designing automated
network anomaly detection (e.g., intrusion [11] or failure
[12]) scheme. In the case of failure prediction, it can help
service providers learn about a possible failure and then take
the necessary measures. For example, service providers can
predict radio link failure in the next 24 hours to support
uninterrupted latency-critical IoT applications.

Some works considered radio link failure prediction in the
presence of weather fluctuations using learning-based algo-
rithms [6], [7]. The authors of [6] used 5G radio performance
indicator data and weather forecast data from a Turkish
company ITU-Turkcell [13]. Then, they proposed an ensemble
learning-based model composed of Random Forest (RF), Light
Gradient Boosting Machine (LGBM), and Extreme Gradient
Boosting Machine (EGBM). Aktas et al. argue that such
failure prediction must consider the temporal correlation in
data; thus, they proposed a Long Short Term Memory Network
(LSTM)-based model [7]. They separated time-dependent fea-
tures from configuration ones and used the LSTM and dense
neural networks, respectively.

We first analyzed both the radio and weather data sets to
understand the feature correlations in this work. We discovered
that the features not only have temporal correlation but also
have spatial one. Thus, we must incorporate the data in a
model in such a way that it can capture that correlation, which
also aligns with the claim from [7]. Moreover, we realized
that the prediction scheme should incorporate weather forecast
data. The rationale for such a choice is that link failure would
be correlated to the weather condition that we predict rather
than the current one. Specifically, we can assume that radio
link KPIs provide the context for failure susceptibility, and
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the weather forecast offers the anticipated conditions the link
will experience. Our rationale also aligns with the state-of-
the-art solution [6] and further gets stronger following the
performance degradation while using the current weather-
based failure prediction in [7]. Thus, we choose weather
forecast data to build the proposed model (see Fig. 1).

Fig. 1: Forecast weather-based link failure prediction.

This paper proposes an LSTM-autoencoder-based radio link
failure prediction scheme considering the spatial-temporal data
correlation and weather forecast data. Unlike existing works,
we rigorously analyze and pre-process data appropriately for
efficient and accurate training, validation, and testing. We also
deploy time-series cross-validation due to the time-dependent
nature of the data, which is missing in existing works. Finally,
we test our model over a diverse set of test data spreading
over 2019 and 2020. Note that existing works only trained
and tested their solutions over the data from 2019. On the
contrary, we trained the proposed model using a portion of
data from 2019; then tested it using the remaining 2019 data
along with the data from 2020.

The proposed scheme first combines the radio and weather
forecast data in the pre-processing phase considering their cor-
relation in the Euclidean space. Then, we apply data encoding
to convert the categorical features to binary vectors, followed
by PCA-based dimensionality reduction. Next, we perform
data balancing as the number of failed links is significantly
smaller than the normal operating ones. We train the proposed
LSTM-autoencoder model over fail-free links and validate that
model with a combination of both types of links, where the
model generates higher reconstruction errors in the case of
failures. Finally, we test the proposed model on a large set
of data to show its effectiveness compared to the existing
solutions [6], [7].

We evaluate the performance of the proposed model using
the real radio and weather data from [14] and compare it with
the existing ensemble and LSTM+ models. We predict failures
for the next day and measure the performance in terms of
precision, recall, and F1 score. Precision refers to the ratio of
true positive predictions to the total positive predictions, and
recall is the ratio of the true positive predictions to the actual
positive samples. An F1 score is a harmonic mean of precision
and recall (see further details in Section V-A). The evaluation
results reveal that the proposed LSTM-Autoencoder offers
14% and 33% higher precision compared to the ensemble

and LSTM+ models, respectively. In summary, the proposed
work has the following contributions.

• We rigorously analyze the data and propose a novel
pre-processing scheme composed of data merging (radio
and weather), encoding, dimensionality reduction, and
balancing in a cohesive fashion.

• The model training and validation offer a new time-
series cross-validation-based approach, where we learn
the classification threshold during the validation.

• We test the model performance over both 2019 and 2020
data while training was conducted on the data from 2019.

• The evaluation results confirm the superiority of the
proposed solution compared to existing ones. We also
share the code with the community for reproducibility
[15].

II. BACKGROUND AND MOTIVATION

This section presents the necessary background on different
ML models to understand the proposed LSTM-autoencoder-
based prediction scheme. We also lay out the rationale for our
design choices.

5G RAN. As the number of users connected to mobile
networks has been increasing substantially in the last few
years, we have been seeing more and more innovations in
this field. One of the main changes is the advent of 5G
networks. It uses mmWaves to allow for high bandwidth
and low latency communication, making 5G a key enabler
for emerging applications like augmented reality, autonomous
vehicles, and smart cities. However, mmWaves increase the
bandwidth at the cost of coverage size and higher penetration
loss. To circumvent these problems, 5G RAN networks tend
to have a high density of small cells coupled with larger
macrocells [16]. With this deployment, users can connect
to the smaller and closer cells, then communicate with the
macrocells that send traffic to the core network, connecting
the user to the Internet. An outline of this type of deployment
is depicted in Fig. 2.

Fig. 2: Example of a 5G RAN.

Encoding and dimensionality reduction. A neural network
model requires input and output variables as numeric values
[17], i.e., we cannot use categorical data while using deep
learning models. There are various encoding approaches, e.g.,
we can convert categorical data to binary vectors using one-
hot encoding [18]. It best fits for categorical data without any
ordinal properties [18], [19], which is the case in our data
(e.g., rainy, foggy, sunny). Using categorical values as input,
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we create new categorical columns and assign binary values to
each, i.e., create binary vector representation. For example, in-
stead of representing ”weather” features {rainy,cloudy,sunny}
as arbitrary numbers like 1, 2, and 3, we create a binary vector
of size 3. The presence and absence of a value in this vector
are denoted by 1 and 0, respectively. Thus, we can represent
rainy, cloudy, and sunny as 100, 010, and 001, respectively.

However, a consequence of such categorical encoding is that
it may add more dimensions to the data and impact the learning
of models. One way to avoid such issues is to reduce the data
dimensions, e.g., using Principal Component Analysis (PCA)
[20]. PCA is an unsupervised statistical analysis method for
component analysis that constructs relevant features using a
linear combination of original features. Specifically, correlated
features are linearly transformed into smaller uncorrelated
components to construct the most relevant features [20].

For example, consider a dataset with three dimensions. In
order to find the principal component of this dataset, we
would first have to standardize the data by subtracting each
dimension’s mean. This standardized dataset is then used to
find the covariance matrix, 𝐶, according to the equation,
𝐶 =

∑(𝑋𝑖) (𝑋𝑇
𝑖
)

𝑛
, where 𝑋 is the standardized dataset and 𝑛

is the sample size. Using the equation, 𝐶 − _𝑖 = 0, we solve
it for _, where each value of _ corresponds to a dimension of
the dataset. Thus, there would be three values of _: _1=1.45,
_2=0.675, _3=1.09 for three dimensions. The higher the value,
the more relevant that dimension is, i.e., the first dimension
is the most relevant in this example. These values of _,
called eigenvalues, can then be further used to generate their
respective eigenvectors through which the entire dataset can
be reconstructed [21].

Data balancing. An important aspect of data preprocessing
is balancing minority and majority classes within the data.
Our radio dataset has a significantly smaller number of failed
events compared to the normal functional links. Usually, a
minor imbalance between majority and minority classes (e.g.,
60:40) does not impact the learning performance of a model,
which is not the case for a significant imbalance (e.g., 90:10),
i.e., the model cannot establish a correct decision boundary
between classes. In this case, a classifier that always classifies
an input as the majority class will have 90% accuracy [22].
To alleviate this imbalance, we can use undersampling [23]
or oversampling [24]. Usually, oversampling tends to be pre-
ferred better over undersampling as it may remove important
information from the data pertaining to classes [24].

We used the synthetic minority oversampling technique
(SMOTE) [24], where the synthetic samples are generated for
the minority class to avoid the overfitting problem caused by
random sampling. By interpolating between existing minority
instances, it generates new data points [24]. Specifically, we
can identify a total of 𝑁 minority instances and randomly
choose one. Then, we can retrieve its K-Nearest Neighbours
(KNN), say for 𝑘 = 5. The approach utilizes a distance metric
to calculate the difference between the chosen instance (feature
vector) and its 𝑘 neighbors, which is multiplied by a random
value between [0, 1] [25]. The process continues as long as
we want to add minority instances.

Autoencoder. An autoencoder consists of an encoder 𝑔(𝜙),
a latent space representation 𝑍𝑛, and a decoder 𝑓 (\) (see
Fig. 3). The encoder learns a compressed vector representa-
tion of the input data 𝑋𝑛, whereas the decoder reconstructs
the input from the compressed vector 𝑍𝑛 [26]. The goal
is to learn the input data structure through the compress-
decompress mechanism while minimizing the reconstruction
error. Specifically, the error is backpropagated through the
model architecture to update network weights in hidden layers.
The process continues until the model converges with the
minimum error [26]. Thus, the reconstructed output 𝑋

′
𝑛 is

similar to the input.

Fig. 3: Autoencoder architecture.

The autoencoder is a great candidate for anomaly detection
as it can learn the useful hidden features present in the training
data with minimum error while generating a higher error in
the case of anomaly [26]–[29]. Thus, in the failure prediction
problem, we carry out the link failure prediction by identifying
the instances which cannot be correctly reconstructed and
classifying them as failed links. We use Mean Absolute Error
(MAE) as the loss function to calculate the difference between
the original and reconstructed vectors.

LSTM-autoencoder. An LSTM is a Recurrent Neural Net-
work (RNN) that allows a network to retain long-term time
dependencies between data points. The LSTM architecture
consists of a series of repeating modules containing three
control gates: forget, input, and output gates. The former
controls which information to pass from one module to the
next to maintain time-dependent context [30]. The proposed
failure prediction model needs to deal with the correlation of
radio and weather time series data and predict possible failure
in the next 24 hours, where we can use LSTM. In the following
paragraphs, we will present an LSTM-Autoencoder model
that combines characteristics from LSTM and autoencoder;
thus, a suitable failure prediction model in our problem space.
Specifically, the operation of an autoencoder with an LSTM
involves reconstructing the input data while maintaining the
temporal dependency of the features.

Fig. 4 presents the architecture of an LSTM-Autoencoder.
The LSTM-encoder transforms a given input sequence into a
fixed-length vector or compressed sequence in a latent space.
This fixed-length vector is called context vector. The LSTM-
decoder takes the context vector as input to predict output
sequences. A repeat vector layer is used at the entry of the
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decoder to replicate the context vector 𝑛 times, where 𝑛 is the
number of future steps to generate. Each of these replicas of
the context vector is then fed to the LSTM-decoder to generate
𝑛 outputs one for each time step. The outputs of the decoder
are then passed through a Time Distributed Layer, where a
fully connected dense layer is applied to each of the outputs
to generate the final one [31].

Fig. 4: LSTM-Autoencoder architecture.

III. DATASET DESCRIPTION

The telecommunication service provider Turkcell from
Turkey gathered the data we used in this work from regional
co-located weather stations and radio towers (sites). The data
was collected from radio towers and surrounding weather
stations between 2019 and mid-2020 [15]. Due to security and
privacy issues, they also offered a pairwise distance matrix
between these weather and radio towers without providing
the actual geo-locations. Furthermore, some of the KPIs and
configuration data is also anonymized. A brief description of
the data is given below. The detailed description of various
features can be found in [15].

Radio sites. This dataset contains spatial features of radio
sites, including the site-no, the ground height (height from the
sea level), and the clutter class (environment type at the site
location, e.g., dense tree area, industrial, or commercial area).
There are 1674 radio sites in this dataset.

Key performance indicators (KPIs). Each sample in the
KPI data represents features used to measure the performance
of radio links. There are 21 KPIs features; out of these,
date-time, polarization, frequency band, link length, severely
error seconds, error seconds, unavailable seconds, available
time, background bit error (BBE), and modulation are the
most effective features to determine the condition of radio
links. Some of them contain the sequential properties, i.e.,
seasonality. For example, date-time, severely error seconds,
error seconds, unavailable seconds, available time, and BBE
are such features. On the other hand, features like polarization,
link length, modulation, clutter class, and ground heights
represent the spatial properties of the data. Samples for each
radio link are measured every day as aggregated values. A
summary of the radio data is given in Table I.

Weather station data. Similar to the radio sites’ spatial
features, this dataset contains spatial features of weather

Subset Total Features Total Samples
RL-Sites 3 1674
RL-KPI 21 979063

TABLE I: The summary of radio data.

stations, which include station ids, ground heights, and clutter
classes.

Real weather data. It has samples from 117 weather
stations. The most impactful features out of 16 are date-
time, measure-date, measure-hour, temperature (max, min, and
current), wind direction (max, min), wind-speed (max, min),
humidity, precipitation, precipitation-coefficient, pressure, and
pressure-sea-level. Several features outlined above contain
sequential properties of the weather data, whereas clutter
classes and ground heights represent the underlying spatial
properties of the weather stations.

Forecast weather data. The weather forecast data contains
forecast reports for the five upcoming days. The useful features
include date-time, report-time, temperature, humidity, wind
directions, and wind speed, which exhibit sequential properties
of the data. A summary of the weather data is given in Table II.

Subset Total features Total Samples
Met-Forecast 9 39370

Met-Real 16 629217
Met-Stations 3 117

TABLE II: The summary of weather data.

Distance matrix. The exact location of the radio and
weather stations is kept anonymous due to security and privacy
reasons. However, their geo-relation is represented as pairwise
distances, which reflect correlations among radio and weather
stations. We summarize all the above dataset description in
Table III.

Data Table Contents

Radio sites Spatial properties and environment of RL sites.

Radio link KPIs RL performance indicators, e.g., BBE and un-
available seconds.

Weather station Spatial properties and environment type of
weather stations.

Real weather Real time weather data, e.g., wind speed and
temperature.

Weather forecast Next five days weather forecast data.

Distance Pairwise distances among weather and radio
stations.

TABLE III: Dataset description.

Impact of weather on radio data. We performed an
initial test to demonstrate the weather impact on radio data
over time. Multiple weather features can impact the failure,
but for simplicity and demonstration, we chose precipitation
that is claimed to have the most impact [32]. The results
in Fig. 5 show that heavy precipitation affects the mmWave
transmission, resulting in link failures. The precipitation rate
is highest during three months in the middle of the year.
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Consequently, we observe frequent link failures during that
time.

Fig. 5: Impact of weather (e.g., precipitation) on radio link
failures.

IV. DESIGN AND METHODOLOGY

This section presents the proposed LSTM-autoencoder
based failure prediction scheme composed of three phases:
data preprocessing, model training and validation, and model
testing. The workflow of the prediction scheme is depicted in
Fig. 6, and each phase is detailed in the subsections below.
At a high-level, the data preprocessing consists of correlating
radio and weather data, encoding categorical features, reducing
dimensionality, balancing samples from minority and majority
classes, and splitting time-series data. Then, the next phase
trains and validates the proposed LSTM-autoencoder and two
existing models. Finally, we test the performance of all three
models.

Fig. 6: Prediction workflow.

A. Data Preprocessing

Distance correlation and noise elimination. The primary
focus of this work is to predict radio link failure due to
the surrounding weather conditions. Thus, understanding the
radio and weather station correlation is critical in this failure
prediction task. For instance, our initial investigation revealed
that in the provided distance matrix, there are some pairwise
distances that are significantly larger than the remaining ones
and can easily be detected as outliers (see Fig. 7). These
distances add noise in the prediction process instead of adding
any useful information. Thus, we propose a simple heuristic
to choose the right set of weather stations associated with the
radio stations, which is missing from previous works [6].

We first compute the distance between each radio tower and
its closest weather station. Suppose there are 𝑟 radio towers, so

Fig. 7: Distances from radio sites (RS) to weather stations
(WS).

we get a distance set: {𝑑1, ..., 𝑑𝑟 }. Thus, we ensure that radio
tower station is associated with at least one weather station.
Next, we take the maximum from this distance set as the radio
and weather station association threshold, which is 4.2 kms.

We merge corresponding samples across the same periods
once we find the correct correlation between radio and weather
stations. For instance, KPI samples are taken once every
morning, so we merge these samples with the weather forecast
at the same time. Next, we resolve the missing samples using
the standard mean, median, mode, or elimination approach
[33]. For example, we eliminate a sample with a missing
radio link ID or frequency band as replacing it with a random
numeric value will create a bias in the distribution. However,
we use the mean value to replace the missing values of min-
temperature, max-temperature, humidity-max, humidity-min,
wind-speed, and link-length. We also utilized the median for
replacing the missing cell for a scalability feature.

Data encoding. Our dataset has categorical features (e.g.,
rain, snow, etc.). As we mentioned earlier, we cannot use
such categorical data while using deep learning models. The
data has to be converted to numerical ones using binary or
one-hot encoding methods. However, binary encoding can
introduce artificial ordering to the encoded data, where the
original categorical ones have no ordinality. In a neural
network model training, such unregulated noise may create
model performance degradation and overfitting [34]. Thus, we
applied one-hot encoding to eliminate the possibility of such
noise, where it converts categorical features into binary vectors
[35]. Specifically, we created a new feature according to the
categorical features and mapped it with a binary variable such
that 0 and 1 represented the absence and presence of a category
for a sample, respectively.

Dimension reduction. The categorical encoding increases
the dimensionality of the data, which can cause features to
appear equally spaced among them. Thus, the model may
not learn the distribution accurately [36]. One way to solve
this issue is by reducing the data dimensionality, which also
reduces the learning complexity and cost. This work considers
PCA, a feature compression approach, to reduce the dimension
while keeping the maximum variance. Note that PCA removes
low-ranked components without losing any information or
impacting the feature distribution learning [36].

We first performed the parameter tuning while using PCA,
i.e., tested different variances, number of components, perfor-
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PC Coeff F1 Score
1377 100% 0.71
1136 96% 0.85
728 90% 0.88
665 85% 0.82
413 75% 0.77
169 65% 0.61

TABLE IV: Parameter tuning during the dimensionality reduc-
tion.

mance, and computation cost. Table IV presents the compar-
ison among Principal Components (PC), Retained Coefficient
Variance (Coeff), and F1 Score. The results show that the
90% variance retention with 728 components offers the best
performance with the chosen one-hot encoding. The original
number of features before applying PCA was 1377.

Data balancing and time-series split. Only a fraction of
the total samples we have resulted in link failures; e.g., the
minority to majority class ratio is 1:320. Such imbalanced
data can prevent a model from successfully learning the
decision boundary. There are several methods to re-balance the
data like random under-sampling, over-sampling, class weight
redistribution, or synthetic over-sampling [37]. However, un-
dersampling can remove important information from the data.
The most naive solution for oversampling is simply duplicating
samples from the minority class, which does not add any
diversity to the data. Thus, we chose the synthesized minority
oversampling technique (SMOTE) to balance the data. The
SMOTE adds synthetic samples systematically between minor
class members and their k-closest neighbors [38]. Thus, the
minority class sample is increased while data distribution
remains intact. We chose 𝑘 = 4 as the number of nearest
neighbors in our implementation. After the re-balancing oper-
ation, the final minority to majority ratio improved from 1:320
to 1:10.

A random sampling of k-fold cross-validation is a standard
approach in non-time-series data to split it into train, valida-
tion, and test sets, which is not the case in time-series data
to retain the temporal correlation. Therefore, we do a 5-fold
cross-validation for a time series split. We consider 𝑘−1 folds
as a training set and the remaining fold for validation at every
cross-validation iteration. For example, in the first iteration, we
trained the proposed candidate model on the data from January
to April 2019 and validated it over May 2019. Then, the
trained data spanned from January to May while we validated
over June 2019 in the next iteration. Thus, we utilized the
expanding window approach of data splitting to keep the
sequential property of the data intact [39]. We continue the
process until September 2019 and use the remaining three-
month data for model testing. We also test the model outcome
with the data from January to June 2020. The entire process
is depicted in Fig. 8, which is similar to a real-world scenario,
i.e., we predict failure based on past observations.

B. Model Training and Validation

In this section, we present the model training procedure for
the proposed LSTM-autoencoder as well as existing ensemble
and LSTM+.

Fig. 8: Time series split representation.

LSTM-Autoencoder. The model utilizes an autoencoder’s
reconstruction property (learns the best parameters) and the
sequence preserving property of an LSTM. An autoencoder
is a great candidate to learn the structure of a given dataset
and can detect any anomaly if that structure changes. Thus,
we first trained our model with regular links without having
any failed ones. Then, we provide that trained model with a
mix of regular and failed links to check whether it generates
high reconstruction errors for the failed ones. Precisely, each
of the four layers of encoder and decoder consists of multiple
LSTM units (see Fig. 9). In the following, we present details
of each component of the proposed model.

The input data 𝑋 (𝑛) ∈ R was encoded over the encoder
block to generate the feature vector 𝑍 (𝑛) ∈ R, where the
dimensions of 𝑋 (𝑛) and 𝑍 (𝑛) are 728 and 22, respectively.
The 𝑅𝑒𝑝𝑒𝑎𝑡𝑉𝑒𝑐𝑡𝑜𝑟 acts as a bridge between the encoder
and the decoder. The encoder and the decoder each contain
four hidden layers. A number of hidden layers were tested
to determine the most optimal one. Similar to the encoder
block, the layers in the decoder block are arranged in reverse
order. The encoded features 𝑍 (𝑛) are sent over a series of
LSTM blocks to generate the output feature vector 𝑋

′ (𝑛). Each
subsequent layer of the decoder increases the dimensions in the
reverse order. The 𝑇𝑖𝑚𝑒𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 layer used the decoder’s
final output as input and created a 728×16 vector matched with
the input one. Next, we describe how the proposed LSTM-AE
is trained and validated before testing its performance.

We started our training with time-series data from January
to April 2019, which does not contain any failed link samples.
Then, we validated the model with a mix of regular and
failed links from May 2019, where we considered training and
validation sample sizes of 427080 × 728 and 106770 × 728,
respectively. We selected Mean Absolute Error (MAE) for
calculating the training loss as we are training the model for
a binary prediction. The training loss converged to a solution
after several iterations, indicating that the model could learn
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Fig. 9: The LSTM-autoencoder architecture.

the underlying structure. We chose the Adam optimizer to
optimize the gradient descent for a better loss calculation. We
used grid-search method to choose the appropriate learning
rate, where the optimal values are: learning rate (0.001) and
dropout (0.3).

Subsequently, the reconstruction loss during the validation
was higher than the train one, i.e., the model struggled to
reconstruct the failed events. We repeated the above procedure
following time-series splitting described in Fig. 8. Specifi-
cally, we calculated a threshold based on the validation set
reconstruction error and applied it to the test data for the
failure prediction. The batch size and epochs are 16 and 50,
respectively, chosen based on the optimal performance. The
Hyper-parameters are listed in Table V.

Hyper-Parameter Selected Value
Epochs 50

Learning rate 0.001
Hidden layers 4

Batch size 16
Optimizer Adam
Dropout 0.3

Activation function ReLU
Loss function Mean Absolute Error (MAE)

TABLE V: Hyper-parameters of LSTM-AE.

LSTM+. Fig. 10 presents the LSTM+ architecture and
operation. LSTM+ separates temporal features from spatial
ones and feeds the former to LSTM units and the latter to
dense fully connected layers [40]. Then, the model feeds
the output vectors to a dense fully connected layer that
concatenates the outputs and computes prediction scores for
input samples. Specifically, the configuration variables (time-
independent) are directly linked with a fully connected layer
with 256 neurons, followed by another with 512 neurons. Both
branches of the model generate multiple local compressed
vectors, where a concatenation layer concatenates the local
vectors. These vectors are then fed to two dense layers, each
with 512 neurons (layer 3 and layer 4 in Fig. 10) and the final
output layer with one neuron. The output layer applied the

matrix dot product among parameters and optimal weights to
calculate the probability distribution of the input samples.

We trained the model for both the forecast and real weather
data, then tested it with the corresponding test data, where
we split the data into train and test sets in the default setting.
Also, we separated configuration features to support the dual
branch input layer of LSTM+. The configuration features are
frequency bands, card types, tips, adaptive modulations, and
modulations and processed with the second input branch as
shown in Fig. 10. We applied the same preprocessing steps as
in LSTM-autoencoder: the one-hot encoding, PCA, and data
balancing using SMOTE. Then, we applied Adam optimizer
along with the binary cross-entropy error function during
the model training, where the learning rate and dropout are
0.001 and 0.3, respectively. Following the LSTM+ design,
we implemented tanh activation for all layers except the final
dense output layer, where the activation function is Sigmoid to
get the prediction score of the binary classification [41]. The
hyper-parameters selected for this model are listed in Table VI.

Hyper-Parameter Selected Value
Epochs 50

Learning rate 0.001
Dense layer dropout 0.03

Batch size 16
Optimizer Adam

LSTM Layers 1
Dense Layer 4
Loss function Binary cross-entropy.

Activation function Tanh, Sigmoid.

TABLE VI: Hyper-parameters of LSTM+.

Ensemble learning. This supervised learning method com-
bines multiple models to offer better accuracy and robustness
[42]. Existing work [6] combined Random Forest (RF), Light
Gradient Boosting Machine (LGBM), and Extreme Gradient
Boosting Machine (XGBoost) in their failure prediction model
(see Fig. 11). Here, a random forest predicts classes based
on a concept called wisdom of crowds. It utilizes votes from
individual trees and determines the output class based on the
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Fig. 10: The architecture of LSTM+.

highest number of votes [43], i.e., it avoids depending on the
performance of a single tree.

Fig. 11: The ensemble model architecture.
LGBM is a gradient boosting framework where a tree model

expands horizontally, i.e., leaf-wise, instead of the traditional
depth-wise expansion [44]. It chooses a leaf with max delta
loss to grow. The leaf-wise expansion helps LGBM demand
less resources while offering high accuracy [45]. Finally, XG-
Boost is a variant of LGBM for better speed and performance
[46]. This is done through concurrent learning, i.e., splitting
the dataset into smaller subsets and using weighted quantiles
[47] to determine node splits instead of evaluating all possible
splits. XGBoost also incorporates methods for determining tree
splitting even with missing values. The model outcome at any
instant, 𝑡, is weighed according to the model outcome at the
previous instance, 𝑡 − 1.

When we implemented the above ensemble model, we
considered 70:30 training and test data split as used in [6]. We
deployed out-of-bag sampling as model validation during the
training using 20% of the training data. The RF classifier was
trained with thousand trees, each having a maximum depth
of four, while the minimum sample splits were set to two
to reflect the binary classification. We used two maximum
terminal nodes from each tree to prevent the tree from growing

further; thus, avoid model overfitting. As trees were added
to the forest iteratively, the model calculated the unbiased
estimate of the classification error based on the out-of-bag
samples [48]. We calculated the corresponding proximity at
the terminal node for each out-of-bag sample. The proximity
value was increased by one when two nodes led to the same
class. We repeated this process for the entire training dataset.
Then, we divided the final proximity value by the number of
trees in the forest for normalization.

We used Gini impurity criterion for the splitting decision
at each node while also ensuring that this value is less for
each descendant node compared to its parent node. Summing
up the decrease in Gini impurity for each variable, across all
trees, provides a quick measure of the variable importance in
the dataset, which can further reduce the variable counts and
decrease training times [48]. Finally, the model calculated the
probability scores of each test sample using the out-of-bag
error estimation.

LGBM and XGB were utilized to boost the performance
of the RF classifier by performing optimal gradient descent
along with the individual model prediction score. The number
of horizontal leaves was 2𝑚𝑎𝑥 𝑑𝑒𝑝𝑡ℎ, where 𝑚𝑎𝑥 𝑑𝑒𝑝𝑡ℎ of the
tree was two for the boosting algorithms. We considered low
tree depth to avoid the model overfitting [48]. The average
prediction score calculated from each of the three models was
the final prediction score of the ensemble model. The model
hyper-parameters are listed in Table VII.

Hyper-Parameter Selected Value
Number of trees (RF) 1000

Maximum tree depth (RF) 4
Leaves per node (LGBM, XGB) 2

Maximum tree depth (LGBM, XGB) 2

TABLE VII: Hyperparameters of ensemble learning.

V. MODEL EVALUATION RESULTS

This section presents the evaluation results of the proposed
LSTM-autoencoder model along with the existing ensemble
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and LSTM+ models. We start the section by describing the
used performance metrics and the evaluation testbed. Then,
we show different results from the parameter tuning process
followed by comparison and contrast of the proposed model
with the existing ones.

A. Performance metrics

We consider the following performance metrics, where True
Positive and True Negative represent the number of instances
correctly classified as failure and non-failure, respectively.
However, False Positive and False Negative represent the
number of instances incorrectly classified as failure and non-
failure, respectively. Note that we do not consider the model
accuracy as an evaluation metric as it is a useful one for a
balanced dataset (symmetric class ratio), which is not the case
in our dataset [49].

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

(𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒) (1)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

(𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒) (2)

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 × (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙

) (3)

We also used the receiver operating characteristic curve
(ROC) to represent the classification results. A ROC is a graph-
ical representation of the model performance of classifying
True Positive Rate (TPR) and False Positive Rate (FPR) for
an optimal threshold. Specifically, the curve plots TPR vs. FPR
at different thresholds and indicates the optimal one [50].

Testbed. We conducted all experiments on a Core i7-
10700K processor running at 4.2 GHz, 32 GB DDR4 RAM,
and Nvidia RTX 2080 TI GPU SLI. The OS and GPU versions
were Ubuntu 18.04 LTS and CUDA 10.2.9.55, respectively,
where we used CUDA to accelerate the training process.

B. Parameter Tuning

In this section, we present the results of different configura-
tion of models, including different encoding, number of layers,
and duration of past history (in number of days).

Impact of encoding methods. The impact of encoding
is presented in Table VIII, where one-hot encoding is the
winner. The binary encoding assigns a numerical value to
each category before converting it to binary. This artificial
ranking of categorical features impacts the model training. On
the other hand, one-hot encoding generates binary vectors for
categorical features. Each vector only has a single true value
corresponding to the presence of the considered feature; thus,
it avoids any bias that binary encoding faces. Specifically, one-
hot encoded data offers smoother training and validation error
convergence, i.e., better feature representation learning. We
iteratively selected the most optimal threshold and categorized
the reconstruction errors for every sample in the last training
epoch. Then, we concluded that the sample was a link failure
if the generated error was higher than the optimal threshold.

Once the model is trained with nine months of data from
Jan to Sept 2019, we tested its performance with the remaining

Encoding technique Precision Recall F1 Score
Binary (2019) 0.80 0.81 0.81
Binary (2020) 0.80 0.79 0.78

One-hot (2019) 0.87 0.85 0.86
One-hot (2020) 0.89 0.83 0.85

TABLE VIII: Prediction results for encoding techniques.

three months’ data and the first six months’ data from 2020
(Table VIII), where we calculated the Precision, Recall, and F1
score using the optimal threshold on the reconstruction error.
We also applied PCA and recursive feature elimination (RFE)
after each type of encoding. We found that PCA offers better
prediction results compared to RFE. Thus, in the subsequent
evaluations, we chose one-hot encoding and PCA.

Impact of the number of hidden layers. Table IX shows
failure prediction results for a different number of hidden
layers, where four layers offer the best result. In particular,
we used 2, 3, 4, and 5 layers in this test with 384, 438,
480, and 556 LSTM neurons, respectively, along with one-hot
encoding and PCA. The model trained with four hidden layers
performed better than the other configurations. The smaller
number of layers could result in model underfitting due to
the high dimensional data and complex feature correlations.
Similarly, five hidden layers with 556 units could lead to the
model overfitting. This added complexity forces the model to
capture noise from the data to the extent that it negatively
impacts the overall model performance.

Hidden layers Precision Recall F1 Score
2 0.64 0.40 0.49
3 0.73 0.67 0.70
4 0.90 0.87 0.88
5 0.52 0.66 0.58

TABLE IX: Prediction results for different hidden layers.

Impact of the size of past samples. When we use a model
like LSTM that preserves the temporal context in the data,
we need to measure the impact of such context window size
on the prediction. Therefore, we varied the number of days
(1, 5, 7, and 10) in the past that the model received to predict
failures. We observed that increasing the number of days from
one to five leads to improved performance in prediction, which
is presented in Table X. However, any further increase does
not improve the results. We suspect these extra couple of days
are further away from the past and do not significantly impact
the prediction. Thus, we consider five days as the optimal
past observation length. In addition to tuning parameters of
the proposed LSTM-autoencoder, we do the same for LSTM+
and ensemble methods, which are presented below.

Test Data Past Days Precision Recall F1 Score
2019 1 0.87 0.85 0.86

5 0.90 0.87 0.88
7 0.90 0.86 0.88
10 0.89 0.85 0.87

2020 1 0.87 0.85 0.86
5 0.90 0.86 0.88
7 0.90 0.86 0.88
10 0.90 0.84 0.87

TABLE X: Prediction results for different number of days in
the past.
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LSTM+. It uses real weather data instead of the forecast
one for failure prediction, which is not the case for the
other two models. Thus, we first tested LSTM+ using both
real and forecast data with varying past observation windows
(see Table XI). The results revealed that the real-time data
performed better compared to the forecast one while using
the past ten days’ observation. LSTM+ separates spatial and
temporal data and considers real-time weather to train the
model. That weather only has numerical values, i.e., fewer
dimensions, without categorical ones. Thus, the architecture
of LSTM+ with fewer LSTM units is more suitable for
generalizing the real weather. This behavior is reflected in the
results, i.e., the real weather yields better performance than
the forecast. Furthermore, these fewer LSTM nodes require
deeper observations in the past to learn the distribution, which
yields ten days as the best observation window.

Data Type Past Days Precision Recall F1 Score
Forecast 1 0.48 0.68 0.55

5 0.48 0.7 0.57
7 0.42 0.67 0.51

10 0.42 0.67 0.51
Real 1 0.57 0.59 0.58

5 0.57 0.60 0.59
7 0.60 0.60 0.60

10 0.60 0.62 0.58

TABLE XI: Prediction results (2019) with varying past obser-
vation windows.

Ensemble learning. The authors of [6] designed an ensem-
ble learning model that they evaluated on binary encoded bal-
anced data. As we observed one-hot encoding and PCA offered
the best prediction results, we applied the same while training
the ensemble model. Furthermore, we observed that their
fixed threshold of 0.50 could further be improved to 0.5802.
Specifically, we computed the predicted class probabilities of
an input sample as the softmax of the weighted terminal leaves
from the decision tree ensemble corresponding to the provided
sample. Then, we calculated the average predicted probability
of the test data from individual model predictions. We chose
the optimal threshold iteratively based on the maximum failure
prediction performance. Table XII presents the results with a
fixed vs. optimal threshold.

Data Setting Precision Recall F1 Score
Fixed threshold (2019) 0.70 0.84 0.76

Optimal threshold (2019) 0.79 0.77 0.77
Optimal threshold (2020) 0.76 0.84 0.79

Fixed threshold (2020) 0.66 0.82 0.73

TABLE XII: Evaluation results of the ensemble model.

C. Performance Comparison of Different Models

Once each model is successfully trained, and associated
parameters are tuned to have the model’s best performance, we
evaluate them over the same preprocessed data. Specifically,
we compare and contrast the proposed LSTM-autoencoder
with LSTM+ [7] and ensemble models [6]. The results are
shown in Table XIII. The results show that the proposed
LSTM-AE outperforms the other two schemes in predicting

link failure in the upcoming day. More specifically, from the
samples which were classified as failed links by the LSTM-
AE, 87% were actually failed links. On the other hand, 90%
of the actually failed links were correctly classified. Further-
more, LSTM-AE achieved 33% and 14% higher precision
than LSTM+ and ensemble, respectively. It also has superior
performance in recall and F1 scores compared to the existing
solutions. Finally, the inference time of the three models is
similar, with LSTM-AE slightly longer.

Model Precision Recall F1 Score Time (min)
Ensemble 0.76 0.84 0.79 5
LSTM+ 0.57 0.60 0.58 5

LSTM-AE 0.90 0.87 0.88 6

TABLE XIII: Comparison of prediction results.

We observed that LSTM+ has the worst performance, which
may have occurred due to multiple reasons. As mentioned
before, fewer LSTM units in LSTM+ may not be suitable
for learning high-dimensional data distribution. Moreover,
the features were separated into different input layers: one
trained with time-dependent features and the other with time-
independent ones. We suspect that processing these separated
features with architecturally different layers (LSTM and dense
Units) leads to inconsistent distribution learning and data com-
pression, which eventually translated to the worst performance.

In the case of ensemble learning, we suspect that not consid-
ering the temporal context impact its performance. However,
using forecast data along with three models compensates for
that price. Overall, we conclude that the proposed model has
the best performance. We attribute this improvement to the
strategic use of the spatial and temporal correlations of the
features together in the proposed model.

D. Discussion

Throughout this work, we have demonstrated how network
signal failures due to weather factors can be predicted using
machine learning. We can extend this system to identify the
areas most susceptible to failures and deploy a solution for
circumventing them partially or entirely. One such deployment
choice can be using RISs in conjunction with an SDN-based
controller for supervision. Preliminary work in this space [51]
describes a smart radio environment consisting of users, SDN
controller, and metasurfaces (RISs) to construct an optimal
route for energy efficiency. We envision that incorporating a
learning-based failure prediction along with a RIS-based route
construction can dynamically be managed and configured in
an SDN platform, which we plan to explore as future work.

VI. RELATED WORK

This section first presents two sets of works: investigations
of the impact of weather conditions on mmWave and learning-
based channel condition prediction. Then, we include RIS-
based schemes in the context of 5G RAN to offer a holistic
view of existing schemes.

Weather impact on mmWave. There are a number of
works that demonstrate that weather fluctuation has an impact
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on wireless communications like mmWave [32], [52]. For
instance, the author in [32] presents that the precipitation has
the most severe impact on the mmWave link, where a set
of spatial links may suffer from signal attenuation or failure
due to the surrounding weather like heavy rain. The author
proposed periodically updating the routing topology following
such disturbance using antenna alignment and disjoint route
constructions. Such disjoint routing topology construction is a
standard practice both in wireless [53], [54] and wired [55],
[56] networks reliability. Yaghoubi et al. [57] also consider the
impact of heavy rain in 5G networks and propose a reliable
topology construction heuristic, where the failures are assumed
to be spatially correlated. However, we envision the above
solutions as fixing strategies after failures detection.

Learning-based failure prediction. There exist a couple
of learning-based failure prediction schemes in the context
of changes in weather conditions. Du et al. [58] proposed a
Bayesian Neural Network (BNN) model to predict link failures
due to wind, rain, and lightning in distributed systems. The
authors claim that BNN is a good choice for an imbalanced
and small dataset, but our dataset is not small. The authors
in [6] focused on failure prediction in 5G RAN using the
weather forecast and radio KPI data that we used in this work.
They considered a supervised ensemble model consisting of
Random Forest, Light Gradient Boosting Machine (LGBM),
and Extreme Gradient Boosting Machine (XGB). The solution
did not provide adequate focus on the data preprocessing.
For instance, the authors used binary encoding, which cannot
offer good performance with categorical data. Furthermore, the
solution did not consider the temporal correlation in the data.

Aktaş et al. filled that gap and constructed an LSTM-based
model that captures the temporal correlations. Specifically,
they separated the time-varying weather and KPI data from
the network configuration ones. The former time-varying
ones are fed into an LSTM while the configuration data
is passed through dense neural networks. The output from
both networks is then concatenated and sent through dense
neural networks again for the final outcome. Our investigation
revealed that separating configuration data from the temporal
one is not useful as it may lose precise context. In addition,
the authors’ choice of using current weather data instead of
the forecast one does not seem a good fit for the future
failure prediction. We propose to use an LSTM-autoencoder to
jointly capture both the spatial and temporal properties using
weather forecast. Zhang et al. combined Convolutional Neural
Networks (CNNs) with LSTM to predict anomalies in cellular
networks [59]. ConvLSTM is a model usually applied to image
classification with a matrix as an input instead of vectors,
which is the case in our failure prediction problem.

RIS-based designs. RISs consist of an array of passive
optical elements, which can manipulate the properties of
waves incident on it, thereby reconfiguring them according
to requirements of the channel in which they propagate [60].
Works such as [61], [62] focus on RIS placement optimiza-
tion, element configuration, channel estimation, beamforming,
and feasible use cases. Diamanti et al. focus on the energy
optimization of RIS in UAV-assisted backhaul networks [63].
The authors use a game-theory based approach to optimize

the energy usage in an end-to-end backhaul network. They
use a combination of distributed RIS-assisted signal strength
optimization and bandwidth splitting. A similar optimization
problem was presented in [64], where a model is developed
to place RIS elements optimally as an alternative route to
compensate for possible link failures. Also, machine learning
has been deployed to design automated RIS-assisted systems.
A number of these approaches are outlined in [65]. For
instance, Liu et al. explored channel estimation using neural
networks [66]. Deep reinforcement learning-based RIS energy
optimization schemes are presented in [67], [68]. We envision
that the RIS-based work can be a post-prediction solution to
offer better resiliency and performance in the target area.

VII. CONCLUSIONS

mmWave radio links from radio access networks can fail
because of the weather impacts. Predicting and preventing
failures in advance can save time, resources, and quality of
user experience in critical IoT applications. In this work,
we investigated the limitations in existing link failure pre-
diction solutions and proposed approaches and models to
address them. We proposed a deep learning model of LSTM-
autoencoder that can efficiently model the normal link data
while generating high errors for the failed ones. Experiments
on real data revealed that the proposed model could efficiently
predict the failures one day ahead of the current date and
classify them from the normal links. As part of our future
work, we plan to explore alternative models to avoid labeling
data and add explainability to the constructed models.
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