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ABSTRACT
Stream processing applications are becoming increasingly impor-
tant in areas such as IoT, video analytics and social media. As a re-
sult, developers and operators must meet stringent time-to-market
and scale requirements before bringing them to production. Unfor-
tunately, testing a networked stream processing system is currently
a cumbersome process that usually requires an expensive testbed
and deep expertise on both networking and distributed systems.
In this poster, we present Raptor, a tool for the fast prototyping
of large-scale networked stream processing applications. Raptor
builds on Mininet and Apache Kafka, two widely adopted platforms,
to enable stakeholders to easily test their solutions under various
operational conditions. Through a reasonably large setup (20 nodes)
running on a single server, we show how unbalanced Kafka’s leader
selection algorithm can be and its implications on the overall sys-
tem’s throughput. We envision this work can help paving the way
for more reproducible research in the stream processing domain,
currently a first-class network application.
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1 INTRODUCTION
In recent years, we have seen a surge on the number of applica-
tions (e.g., social media [2], finance [3], healthcare [4]) that rely
on the processing of data streams. Indeed, more than 80% of the
Fortune 100 companies currently use some stream processing plat-
form, e.g., Apache Flink, Kafka Streams [1]. Unlike traditional batch
processing where data is collected over time and then analyzed,
stream processing applications continuously query and analyze
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Figure 1: Raptor workflow.

data, which enables faster response. Despite the great success of
the stream processing paradigm, testing a networked stream pro-
cessing application (particularly at scale) is still a cumbersome and
often expensive process. On one hand, developers and operators
must cope with all challenges associated to deploying a networked
system (e.g., routing, addressing, monitoring). On the other hand,
they also need to rely on either costly testbeds (usually a cluster
of servers organized into some pre-defined, i.e., fixed topology)
or complex cloud-based setups for running their experiments. Al-
though there exist a few virtual testbeds available to the research
community for free, e.g., GENI, CloudLab and Chameleon, they
normally require advanced expertise from users to create a timely
application setup. Ultimately, these challenges delay new advance-
ments in the area and sometimes even forbid interested parties to
participate on it.

This work presents Raptor, a tool designed to lower the cost (i.e.,
time and money) of prototyping and experimenting with large-scale
networked stream processing applications. Raptor combines the
flexibility and realism of a network emulator (Mininet [5]) with
the generality of a widespread event streaming platform (Apache
Kafka) to provide developers an easy way to test their solutions
under multiple operational conditions (e.g., different network loads
and topologies, replication mechanisms, failure models). The tool
can run reasonably large setups (beyond 20 nodes) on a commodity
server and offers a great set of detailed measurements, including
bandwidth and latency reports as well as event logs. We hope
Raptor can also facilitate the reproducibility of research results in
the stream processing domain.

2 RAPTOR OVERVIEW
This section discusses the main challenges in realizing Raptor and
explores its design and implementation. Deploying such a tool is
non-trivial. First, there are multiple running tasks (e.g., network
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Figure 2: Example scenario deployed using Raptor. Brokers
k and 20 are the leaders for topics 1 and 2, respectively.

switches, stream processors, data loggers) that must be accommo-
dated on the same host. Second, some of these tasks must meet
stringent performance requirements to work properly. For exam-
ple, a broker replica must reply to periodic messages on time to
not be considered outdated. Lastly, load can be significantly unbal-
anced, meaning a few tasks (e.g., the network control plane) may
concentrate heavy load chunks.

Figure 1 shows Raptor’s workflow. The tool takes as input: i) a
set of actors (i.e., data producers and stream processors/consumers)
specified by the application developer; ii) necessary configuration
parameters (e.g., number of brokers, event topics and replicas) for
setting up the underlying event streaming platform; and iii) a de-
sired network topology to host the whole stream processing system.
Raptor instantiates the specified topology using a network emulator.
As part of this process, our tool provides several parameters that
can be systematically tuned to model various operational condi-
tions, including different routing and broker placement algorithms
as well as failure profiles. Once the network is set, Raptor starts
its event streaming platform and subsequently the user-specified
producers/stream processors. Note that each of these actors run
as an independent process which enables them to be balanced and
prioritized among multiple cores. In addition, Raptor also triggers a
series of monitoring tasks that are responsible for logging relevant
information from both the network and the application perspec-
tive (e.g., bandwidth measurements, timestamped events). Finally,
a visualization module presents to the user a rich set of statistics,
such as per-port throughput and data synchronization latency (i.e.,
the time it takes for all subscribers to receive a message once it is
published).

Implementation. We implemented Raptor on top of Mininet
2.3.0 and Kafka 2.8.0. Our system comprises approximately 1K lines
of Shell and Python code. We use Networkx 2.5.1 and Matplotlib
3.3.4 to parse topology specifications (expressed as GraphML files)
and present data visualizations to the user, respectively. The emu-
lated network is proactively configured using a lightweight switch
control daemon (based on ovs-ofctl) to bound the control plane
overhead.

3 USE CASE
To demonstrate Raptor’s benefits, we describe how it can be used to
easily prototype a reasonably large stream processing system and
test the latter’s behavior under a variety of operational conditions.
For that, we consider a geo-distributed scenario where multiple bro-
kers (20 in our case) are placed on different locations. Each location
also hosts a producer and a consumer that connect to their local
broker for streaming data (see Figure 2). Every producer generates
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Figure 3: (a) Receiving throughput at network access ports.
First 400 seconds reflect the system warm up. (b) Distribu-
tion of topic leadership among brokers.

data at a fixed rate of 30 KBytes/s and publishes it uniformly over
100 topics1. We assume a random topology where all links have the
same capacity (1 Gbps) for simplicity.

Raptor parses this topology and automatically deploys the speci-
fied distributed stream processing application over the emulated
network. Note that all network configuration details (e.g., address-
ing, routing policy) are transparent to the user, though can be
manually set if needed. As part of Raptor’s statistics, Figure 3a de-
picts the overall throughput of all network access ports (i.e., switch
ports connected to end hosts) along time. We can see that even
though traffic should be uniformly distributed among brokers as
Kafka tries to balance topic leaderships, in practice bandwidth de-
mands vary more than 4x among access links. That is mainly due
to inefficiencies from the Kafka’s load balancing mechanism.

To confirm the above hypothesis, we parsed Raptor’s logs to
identify the leading broker for each topic in our experiment. Fig-
ure 3b shows a histogram of the topic leadership distribution among
brokers. The red bar illustrates the ideal scenario, where all brokers
lead the same amount of topics, i.e., 5. As we can observe, the lead-
ership frequency varies significantly among brokers, ranging from
1 to 9 and evidencing a strong unbalancing effect. These results
show how Raptor can be used to improve the efficiency, e.g., by
testing better load balancing mechanisms, of stream processing
applications.
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1Kafka always directs a producer/consumer to the topic leader while trying to balance
leaderships among brokers.
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