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Abstract—Computer vision is a crucial component in many
modern applications (e.g., medical image analysis, environmental
monitoring and self-driving cars). However, their stringent com-
putational, latency and bandwidth requirements still pose a huge
challenge to system architects, which must seek for alternatives
to both the limited resources (e.g., low-end CPU) on client devices
and the hurdles of moving data from clients to cloud/edge
servers for analysis. In this work, we advocate for the usage
of emerging programmable network devices to speed up ML-
based computer vision tasks, particularly image classification,
on resource constrained environments. To take the first step
towards this new paradigm, we propose NetPixel, a framework
that enables P4-programmable switches to classify images in real-
time, accurately and at scale. We implemented a prototype of
NetPixel in a software switch to show its feasibility and conducted
a preliminary evaluation on widely adopted datasets. Our results
show that NetPixel can classify images with an accuracy within
8% that of a server-based implementation even for shallow
classifiers and low-resolution images.

Index Terms—Distributed systems, machine learning, network
protocol, P4, computer vision.

I. INTRODUCTION

The proliferation of latency- and safety-critical IoT appli-
cations like AR/VR, surveillance, or autonomous vehicles
and the evolution of 5G networking have fueled the post-
cloud computing paradigm, edge computing [1][2][3]. Edge
computing brings computing resources closer to end users
for a better quality of experience due to faster response
times. However, that comes at the price of reduced processing
capacity on servers. Researchers have tried to alleviate resource
limitations through: i) carefully distributing tasks among end
and edge nodes [4]; or ii) augmenting edge servers with domain-
specific accelerators (e.g., GPUs for ML operations) [5] in an
attempt to not overwhelm the increasingly scarce edge fleet.

With the advent of software-defined networking and pro-
grammable network devices (e.g., programmable switches,
smart NICs), it also becomes possible to accelerate or offload
data processing to this hardware. For example, recent Tofino-
based switches [6] can provide orders of magnitude higher
throughput and lower latency than servers and thus emerge as
a feasible solution to alleviate the edge burden. Previous work
has exploited programmable switches to speed up a variety of
applications including machine learning [7], caching [8], lock
management [9], and even edge detection [10].

In this work, we advocate for using programmable network
devices to accelerate a more complex computer vision appli-

cation, namely, image classification. Image classification is
a fundamental computer vision (CV) task needed in many
latency- and safety-critical applications [11], [12], [13]. We
argue that network devices sit between low-end appliances
and edge servers and thus become a natural choice to offload
or accelerate the intended processing. To support our claims
and show the feasibility of in-network image classification, we
present NetPixel, a framework that allows P4-enabled devices
to classify images in real-time, accurately, and at scale.

We compare the performance of NetPixel against a baseline
Python implementation over several real datasets (e.g., MNIST,
ImageNet). Our results show that the performance degradation
(mainly due to approximate computations) is marginal. In
particular, the accuracy loss is below 8% in the worst case;
these results help to pave the way for offloading or accelerating
image/video-based latency-critical edge applications to on-path
network devices. To summarize, our contributions through this
work include:

• Designing NetPixel, a novel system that allows accurate
image classification on a programmable network device
for latency-critical applications.

• Designing a protocol for sending images as chunks through
multiple packets to allow efficient feature calculation and
subsequent classification.

• Evaluating our system against a baseline server implemen-
tation and demonstrating its competitive accuracy.

Organization. The rest of this paper is organized as follows:
in Section II, we provide the necessary background on PISA
architecture and the P4 programming language upon which
NetPixel has been developed. The same section also delves
into the motivation behind NetPixel alongside some of its
implementation challenges. Section III presents the description
of NetPixel’s design. NetPixel is then evaluated against a
baseline Python implementation using three different image
datasets in Section IV. We discuss works closely related to
ours in Section VI followed by concluding remarks in Section
VII.

II. BACKGROUND AND MOTIVATION

This section provides the necessary background to understand
the proposed system. We also outline the motivation and
challenges for designing NetPixel.
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A. Computer vision and distributed systems

Computer vision constitutes a variety of tasks that help
machines gain higher-level understanding of image data or their
sequences (i.e., videos). Among the most common computer
vision tasks, one can find image classification, segmentation
and object detection [14]. In this work, we focus on the former
as it is also a basis for the other tasks. Computer vision-based
systems have drastically improved their capabilities over the
last decade mostly thanks to the adoption of machine learning
algorithms (e.g., decision trees, deep neural networks) [15],
[16], [17]. However, the ever increasing computational demand
of these algorithms (currently in the order of O(n5)) [18] has
also led to the need of (at least partially) offloading image
data processing from low-end client devices to more powerful
cloud/edge servers. As a result, system architects strike to find
a balance between the latency and bandwidth requirements
of current computer vision applications and the constrained
resources on mobile and IoT gadgets.

B. Motivating scenarios

Next, we outline a few driving scenarios to push image
classification towards emerging programmable network devices
as an efficient solution to the trade-off faced by computer
vision system architects.

Real-time image recognition. Timely image recognition is
a critical task for applications such as AR/VR, self-driving
cars and smart factories [10]. However, executing heavy image
processing tasks on low-end devices (e.g., an electric car or
a robotic arm) remains difficult today due to their processing
and energy constraints. Although cloud/edge servers could
offer better capacities, they usually incur unacceptably higher
network latency. In this context, programmable switches can
offer a high-speed alternative that is also less hops away.

Image/frame filtering. Camera deployments (e.g., for
surveillance, traffic or environmental monitoring) are becoming
ubiquitous especially in urban areas [19]. However, the growing
number of always-on cameras can collectively generate hun-
dreds of gigabytes of data every second, which easily overload a
shared network infrastructure [19], [11]. An intuitive alternative
to this problem is filtering out images/frames that do not contain
relevant information (e.g., performing classification near where
the images are produced) to avoid unnecessary transfers [20].
Such pruning can also reduce the high compute load on edge
servers, enabling more video feeds to be processed on these
boxes or reducing the amount of resources to be provisioned.
In this sense, programmable network devices are a sweet spot
for image/frame filtering as they sit in-between low-end IoT
cameras and edge servers and can provide up to terabits per
second throughput.

C. Programmable switches

NetPixel has been developed targeting recent programmable
network elements, e.g., switches and SmartNICs. In-network
computing has become popular in recent years, influenced
by advancements in networking device capabilities and the
broad paradigm of computation at the edge of the network.

Fig. 1: PISA architecture model.

The standard de facto programming language for networking
devices is P4 [21]. The P4 language is based on the Protocol
Independent Switch Architecture (PISA) [22], and contains
constructs to facilitate the programming of packet processing
tasks (e.g., parsers, match-action tables, headers and metadata).
Figure 1 summarizes the PISA architecture model. PISA-based
devices include multiple packet processing pipelines. Packets
traditionally flow sequentially through the ingress pipeline,
followed by the egress pipeline, and then forwarded back
to the network. A pipeline accounts for the bulk of packet
processing and contains one or more match-action tables.

As packets arrive at the switch, the parser extracts infor-
mation from the header fields, including traditional physical,
network, and transport layer headers as well as application-
specified custom headers. The match-action tables are then
used to match these header fields’ values and perform a
subsequent action set. Packet header values may also be
modified or manipulated during ingress processing, alongside
packet metadata and on-board registers, constructing a memory
space that can span multiple pipeline stages. Depending on the
application complexity, packets may be recirculated through
designated ports, carrying information through rewritten header
values.

D. Challenges and opportunities

While P4 supports simple mathematical and logical opera-
tions such as addition and xor, it is not possible to perform
more complex ones (e.g., division and logarithm) using basic
language constructs [23]. Also, P4 does not support floating-
point arithmetic, which is inevitable in image classification
tasks. We overcome these limitations by computing complex
values as approximations and converting floating-point numbers
into their fixed-point representation. Additional constraints
may also apply depending on the target device. For example,
hardware switches may impose restrictions on the number of
bits that can be parsed from a packet to achieve line rates. For
those cases, programmers may need custom solutions (e.g.,
recirculating a packet to inspect its payload).

III. NETPIXEL DESIGN

A. Overview

Figure 2 shows the overview of NetPixel, which consists of
a gateway switch and a network controller. Next, we discuss
each component in detail.
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Fig. 2: NetPixel Overview

Fig. 3: Packet Format

Switch. The switch is responsible for extracting pixel infor-
mation stored in each packet, calculating the various features
that will be used for image classification, and effectively
classifying images themselves. These pixels are sent over the
network as packets, based on the protocol described in Section
III-B. Squared chunks (of n pixels) are created, where each
chunk is sent in a separate packet1.

As we discuss in Section IV-E, the size of the chunk impacts
NetPixel’s performance. Based on our experimental findings,
we select 3x3 as the preferred chunk size for NetPixel’s
design. This is the chunk size used throughout the evaluations
performed in this paper. Our selection is derived from the
slightly better accuracy provided by this size as well as the
reduction in per-packet calculations performed on the switch,
relative to larger sizes. However, network constraints (e.g.,
packets-per-second throughput is limited by hardware) may
require clients to send larger chunk sizes in order to send
images faster (i.e., using fewer packets).

Once pixel values are extracted from packets, the RGB
components of each pixel (each component is an 8-bit value)
are used to calculate the various features required to classify
an image. Based on the literature [24], we have selected seven
main features: the number of edge segments and distinct colors,
the contrast and average brightness, and the ratios of low, mid
and high intensity pixels in the image. Each feature is discussed
in detail in Section III-C.

Lastly, NetPixel applies the calculated features to a classifier
that labels the image and sends the result back to the client
device. Note that the image data can be either discarded
or sent to an edge server for further processing. We have
selected decision trees as image classifiers due to their intuitive
mapping to a match-action pipeline. However, our approach is
orthogonal to the type of classifier and could be extended to
support different algorithms (e.g., SVM, K-means, quantized
neural networks [23]. We leave the investigation of NetPixel
performance under different classifiers as future work. Section
III-D gives more details on how we structure our decision tree.

1Client devices can apply a downscaling technique (e.g., discarding a few
pixels) if an image size is not a multiple of n.

Fig. 4: NetPixel protocol

Controller. The core function of NetPixel is dependent
on the rules of the decision tree. The network controller is
responsible for the training of the classifier model, based on the
CART algorithm [25], and installing the rules pertaining to the
model on the switch. The controller must read and convert the
rules to entries for the match action table. These entries contain
the feature values as keys and subsequent class decision for
that particular combination. Once these rules are installed on
the switch, the latter may begin its inference tasks.

B. Network protocol

NetPixel has its own protocol for transmitting images to
the switch, which works at the application layer (on top of
TCP/UDP). As can be seen in Figure 4, the image is sent as
squared chunks of n pixels, describing the whole image. These
packets contain the color information in the form of RGB
values, for the pixels in that chunk. This is depicted in Figure
3, which also shows the other header fields of the NetPixel
protocol. S/T are flags to indicate start and terminating packets
(i.e., the first and last packet containing data associated with
the same picture); SQN stands for sequence number and can
be used for reliable transmission in case of UDP packets; CLS
stores the final class decision (i.e., a label) once the image
is classified. This field is empty in all packets except for the
terminating one, which carries the class decision back to the
client device2. Finally, R1, G1, B1, ..., Gn, Bn is the sequence
of n pixels represented by their RGB components. The chunks
begin at the top-left corner of the image and continue in a
horizontal fashion for the first row of chunks, followed by the
next row until the whole image has been transmitted. NetPixel
is designed to perform scale invariant to image sizes and thus
does not require a fixed number of pixels or chunks. Once
all chunks have been received by the switch, inference is
performed using the decision tree implemented in P4. The
resulting class decision is then written on to the final packet
in the appropriate field. This packet is then retransmitted back

2We also envision NetPixel to be used as part of other applications (e.g.,
frame counting or filtering). In this case, terminating packets could be sent to
other devices such as an edge server or even discarded.
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Feature Formula

Number of colors |C|
Ratio of Pixels with low intensity (

∑s
i=1 xi)/s : 0 < I(xi) < 85

Ratio of Pixels with mid intensity (
∑s

i=1 xi)/s : 86 < I(xi) < 171
Ratio of Pixels with high intensity (

∑s
i=1 xi)/s : 172 < I(xi) < 255

Contrast (Imax − Imin)/(Imax + Imin)
Avg brightness (

∑s
i=1 I(xi))/s

Number of edge segments
∑h

j=2 1 : LjLj−1 < 0

TABLE I: Supported features. Symbols: xi - a pixel; I(x) -
intensity of pixel x; Imax, Imin - highest and lowest intensity
pixels, respectively; Lj - value of Laplacian filter when applied
to chunk j; s - image size; h - number of chunks in an image;
C - set of distinct colors in an image.

to the source device, which then utilizes the class decision
according to its application requirements.

C. Image features

This section describes the features NetPixel uses to classify
an image, which are outlined in Table I. NetPixel applies the
same operations to all pixels in a chunk. Total number of colors
is calculated using the RGB components of a pixel, while the
rest of the features assume gray-scale intensities. NetPixel
converts pixel values from RGB to gray-scale according to
Equation 1, where I is the resulting intensity value.

I = 0.299 ∗R+ 0.587 ∗G+ 0.114 ∗B (1)

Number of colors. This feature describes the number of
distinct colors present in an image. To calculate it, NetPixel
maintains both a bloom filter to keep track of colors previously
seen and a counter to count new ones. The bloom filter is
indexed by a hash of the RGB components from a pixel while
entries are single-bit values indicating the presence of a color.
In the worst case, the number of entries should be large enough
to accommodate hashes for all possible combinations of RGB
values without collisions, which is impractical as the RGB
palette has more than 16M colors (∼2MB of memory for
calculating number of colors of a single image). We overcome
that issue with three observations: i) the usage of multiple
hash functions can decrease the number of filter entries while
keeping the same accuracy level [26]; ii) in practice, most of
the images contain less than 1M different colors3; and iii) ML-
based classifiers can afford small inaccuracies on the feature
values while still working properly. With those observations
on hand, we were able to reduce filter sizes to less than 1M
entries (∼120KB of memory per image).

Ratio of pixels with low, mid and high intensity. By
definition, intensity refers to the pixel values in the gray-scale
colorspace (i.e., a single value ranging from 0 to 255 and
calculated based on RGB components according to Equation
1). NetPixel divides the gray-scale colorspace into three ranges:
0-85 for low, 86-170 for mid, and 171-255 for high-intensity
pixels, and counts the number of pixels in each range. NetPixel

3We observed that empirically for the datasets used in our experiments.

stores a counter for each of these three features. All three
counters are then divided by the image size once the terminating
packet is received to obtain the desired ratios.

Contrast and average brightness. The contrast of an image
entails the differences between its low and high intensity pixels,
and is calculated as (Imax − Imin)/(Imax + Imin), where
Imax and Imin represent the highest and lowest intensities
among all pixels. Overall, high contrast images have a large
range of intensities (i.e., large difference between Imin and
Imax). NetPixel compares each pixel intensity with current
minimum and maximum and updates these values if required.
It then calculates contrast once all pixels have been processed.
Average brightness, on its turn, refers to the average intensity
of all image pixels. NetPixel keeps a counter to accumulate
pixel intensities and divides it by the image size to compute
average brightness. The rolling values (three in total) required
for these two features are stored on switch registers, and the
final calculations for the feature values performed upon the
arrival of the terminating packet.

Number of edge segments. NetPixel uses a Laplacian filter
to calculate the number of edge segments in an image. The
filter, whose definition depends on its size [27], has the same
dimension as the image chunk and works by looking for
differences in pixel intensities among chunks. For that, NetPixel
compares the Laplacian filter value from two consecutive
packets looking for zero-crossings (i.e., transitions from positive
to negative values or vice-versa), and counts the number of
crossings among all chunks. This approach has two sources
of inaccuracies. First, as we only check Laplacian values
between a chunk and its predecessor, it is not possible to detect
horizontal edge segments (or differences in pixel intensities
between consecutive vertical chunks). Second, we only apply
the Laplacian filter on different chunks, meaning its sliding
window is always equal to the filter (or chunk) dimension. As
a result, we may not be able to detect segments that are fully
contained inside a chunk. We tested the decrease in accuracy
caused by these two simplifications for the datasets used in
our experiments (see Section IV) and found it to be smaller
than 5% in the worst case though.

D. Pipeline structure

The complete pipeline of NetPixel, as shown in Figure 5
in terms of how each packet is used to build up the features
for each image, consists of a number of stages. Each of these
stages is described in detail below.

First, the red, green and blue components of each pixel are
combined and used in a hash function to determine whether
they represent a new color or not. A bloom filter is used
to store the set of previously seen colors. Next, each of the
RGB pixels is converted into its equivalent gray-scale value
using Equation 1. Each gray-scale value is then compared
to the aforementioned ranges and the appropriate counter is
incremented to compute intensity ratios. Next, the gray-scale
values are compared to the current minimum and maximum to
check whether these values need to be updated as part of the
contrast calculation. The intensity values are also added to the
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Fig. 5: NetPixel pipeline.

summation of all intensities, which will later be used for the
average brightness feature. These are all done for each pixel
in the chunk. Finally, the Laplacian operator, L, is applied to
the gray-scale pixel values of each chunk and, if the packet is
not a terminating one, it is ready to be deparsed (or discarded).
In case it is a terminating packet, values from the registers are
used to consolidate the final values for the desired features.

Once all features are calculated, their values are used as
inputs to the image classifier. NetPixel uses a decision tree to
classify images, which is deployed as a single match-action
table matching all features described in Section III-C. Resulting
actions then set an appropriate class (or label) according to
the matched rule. While different designs are possible (e.g.,
deploying each feature [23] or tree level [7] in a separate
table), as we show in our experiments the number of rules
required for achieving a decent accuracy when classifying an
image is relatively low compared to the number of rules in
current packet classifiers (which can easily contain hundreds
of thousands of rules), and thus could be considered as an
alternative to reduce the resource consumption (e.g., number
of match-action stages used) particularly on hardware devices.

Each rule in the NetPixel classifier encodes a set of
constraints on one or more features, representing a path (from
root to leaf) in the decision tree. If the same feature is
constrained more than once in a path, the NetPixel controller
translates the multiple constraints into a single one representing
their intersection. Likewise, if a feature is not constrained, the
NetPixel controller sets its range to [0, T ], where T is the
largest value the feature can assume. Currently, NetPixel uses
range rules to classify images, though these can be converted
into ternary or LPM rules by breaking a range into multiple
entries for devices that do not support range-based matches
[28], [23]. We leave the investigation of classifier optimizations
and alternative classifier designs as future work.

Dataset Image size Training images # of labels

MNIST 28x28x1 60000 10
CalTech101 Variable 9200 101
CalTech256 Variable 30000 256
ImageNet Variable 20000 100

TABLE II: Evaluated datasets.

Dataset DT-Python NetPixel

MNIST 92.45% 85.00%
CalTech101 96.50% 92.78%
CalTech256 91.11% 87.28%
ImageNet 90.36% 86.73%

TABLE III: Classification accuracy for different datasets.

IV. EVALUATION

A. Setup

We have implemented a prototype of NetPixel including
three components: i) a data plane written in P4 (around 1.8K
lines of code), targeting the v1model architecture (we use
the BMv2 software switch in our experiments); ii) a Python-
based network controller (around 300 lines of code), which
trains the ML classifier and converts decision rules into the
switch pipeline configuration; and iii) a client library (also
written in Python) that receives an image and encapsulates it
into NetPixel packets. Our code is available at [29]. Both the
network controller and the client library convert all floating-
point values into their fixed-point representation (we use 28
and 4 bits for the integer and fractional parts, respectively)
before sending them to the switch4. For the evaluation of our
system, we use a host equipped with a 4-core Intel Core i5-
7400 CPU and paired with 8GB of RAM, which runs our
Python scripts and the BMv2 software switch. The same host
was used to run the DT-Python baseline system against which
NetPixel is compared. The main goal of our evaluation is to
assess the feasibility and functionality of our design. We leave
a thorough performance analysis (including detailed latency
and throughput experiments) as part of our future work5.

Datasets. We used four different datasets for evaluating
NetPixel, whose attributes are detailed in Table II. MNIST [30]
contains gray-scale images of handwritten digits. CalTech101
[31] and CalTech256 [32] contain variable size color images
with 101 and 256 classes, respectively, while ImageNet [33]
is a database of 14 million variable size images. There are
around 21000 classes in this database, from which we have
selected 100.

B. Overall performance

Table III presents the accuracy of NetPixel on the chosen
datasets. The results are based on 10-fold cross-validation

4We assume all values are at most 32 bits long, though our implementation
can be extended to support bigger values.

5We are currently porting NetPixel implementation to the Tofino architecture.
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Fig. 6: Accuracy of NetPixel when varying tree depth
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with a tree depth of 25. In general, we observe an accuracy
discrepancy of 5% to 7.45% between NetPixel and the baseline.
This result is expected as we consider an approximation to
alleviate the limitation of P4 and PISA on supporting division
and floating-point operations. Among all datasets, CalTech101
has the best accuracy while MNIST has the worst. The latter
dataset has the lowest number of classes when compared to the
others; however, the similarities in the features like the total
number of colors, average brightness, and contrast impact the
performance, i.e., the role of these features in the consolidation
of decision boundaries diminish. By extension, it would be
appropriate to assume that similar effects would be seen for
datasets where classes contain a high level of resemblance to
each other. On the other hand, CalTech101 and Caltech256 both
have a wide range of classes that allows the chosen features
to establish definitive decision boundaries among the classes.
Finally, the image classes in ImageNet vary less compared to
CalTech datasets resulting in a lower accuracy than CalTech256.

C. Impact of tree depth

In this evaluation, we use the Caltech256 dataset to observe
the effects of tree depths on NetPixel’s accuracy and memory
footprint, which are shown in Fig. 6 and Fig. 7 respectively.
We denote memory usage by the number of rules generated
by the decision tree since each rule is stored on the switch as
a match-action table entry. Overall, the higher the number of
rules the larger the memory footprint. While the tree depth is
predefined before classifier training, the number of nodes and
consequently the number of rules within that depth may still
change, as the experiments reflect. As expected, the accuracy
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increases with the increasing tree depth with the sharpest incline
from depths 15 to 20. An accuracy of 80% or more requires
a tree depth of around 23 for Caltech256 as more leaf nodes
are required to achieve high accuracy. However, that demand
impacts memory usage (Fig. 7). In particular, there is not a
drastic change in the number of rules between depths 5 and
10; after that, the number of rules increases almost linearly as
depth increases. Note that the increase is not exponential with
the tree depth as the tree does not use the maximum depth in
every branch because of having alternatives.

D. Impact of image resolution

We again use the Caltech256 dataset to observe NetPixel’s
sensitivity to image size and measure accuracy and memory
usage (see Fig. 8 and Fig. 9). In order to observe the effect of
varying image sizes, we scaled images on the client-side using
a Bicubic interpolation before sending them to the classifying
switch. Interestingly, the image size does not have a significant
impact on the accuracy compared to the tree depth. We believe
the chosen features are scale invariants that can consolidate
decision boundaries even for smaller images. We observe a
similar performance trend in the case of memory usage. In
particular, the memory usage remains mostly unchanged with
the varying image sizes for Depth-25, while we observe a 14%
increase in memory usage when the scaling factor changes from
0.2 to 1 for Depth-20. This is due to more nodes being required
for the larger image size within the maximum tree depth of 20,
i.e., more rules are generated to establish decision boundaries
between classes. However, for Depth-25, the nodes are enough
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in number to establish definitive decision boundaries even with
varying image sizes.

E. Impact of chunk size

We also evaluated the effect of different chunk sizes on the
accuracy of NetPixel’s classification. We use the CalTech256
dataset for this test. As can be seen in Figure 10, the accuracy
slightly decreases beyond the standard 3x3 chunk-size we have
used throughout this paper and the largest chunk size of 15x15
pixels. Chunk-sizes are mostly relevant to the number of edges
feature, with larger chunk-sizes detecting fewer numbers of
edges in an image. This creates a lower range of possible
edges in an image and thus makes it harder for the classifer to
establish definitive decision boundaries in some cases. However,
since this affects a single feature only, the decrease in accuracy
is not significant.

V. DISCUSSION

In this section, we outline how NetPixel can be extended in
several ways.

Hardware implementation. As part of our ongoing work,
we are implementing NetPixel in a programmable ASIC-based
switch (e.g., Intel Tofino [6]). In addition to the challenges
described in Section II-D, Tofino-based switches also pose
extra resource limitations such as a restricted number of TCAM
entries and pipeline stages. To overcome these limitations, we
consider applying feature importance analysis techniques [34]
to simplify our ML model while keeping its accuracy high.

Neural network based ML models. NetPixel was originally
designed based on decision trees due to their straightforward
implementation in programmable network devices. However,
deep neural network (DNN) based image classification algo-
rithms (e.g., convolutional neural networks) have shown higher
performance, i.e., accuracy. We plan to extend the current
NetPixel design to accommodate the capabilities of neural
networks such as convolutional neural networks. One alternative
is converting a trained DNN into a decision tree or simplifying
the NN architecture using binarization and pruning methods.

Other applications. Although we targeted image clas-
sification in this work, the overall principles of NetPixel,
i.e., in-network computing applied to machine learning and
image/video data, are not restricted to this task. Indeed, we en-
vision extending our work to encompass other applications such

as the ones involving object detection and image segmentation
tasks.

VI. RELATED WORK

In the following, we briefly outline and contrast existing
work with NetPixel.

Image classification. The existing image classification
designs mainly differ in feature selection, and image clas-
sification techniques [35]. Many solutions (e.g., [24], [36])
have adopted decision trees due to their simplicity, accuracy,
and interpretability properties. Other works explore image
classification on the Raspberry Pi as an edge device, either
through various ML algorithms [37] or well-known deep
learning frameworks [38].

Kong et al. [39] present a framework that constitutes face
recognition and image classification taking advantage of an
edge server through the use of multiple CNN frameworks.
This system is used to classify mask-wearers in a pandemic
environment. A similar method for the classification of crops
was proposed in [40], running inference on a nearby server
using the TensorFlow framework. Avgeris et al. [41] present
a system for fire detection in rural areas, making use of
an image classification system with data captured from low-
powered IoT devices and/or cameras. However, this system
makes considerable use of the resources at a cloud server.
Despite the varied nature of these works, they do not delve
into the potential for programmable network devices to deploy
a scalable and real-time image classification framework like
NetPixel.

In-network computing. Computation on networking de-
vices (e.g., switches, smart NICs) has seen a massive surge with
the advent of programmable networking hardware, enabling
both the offload and acceleration of a number of applications
[23], [8], [9]. Similar to NetPixel, Xiong et al. [23] and Busse-
Grawitz et al. [7] propose implementing decision tree-based
classifiers in programmable network devices. However, their
focus is on networking applications (e.g., flow classification),
and none of them explore the challenges intrinsic to image
classification tasks (e.g., calculating image features). Glebke
et al. [10] implement an in-network edge detection application
using P4 and a smartNIC without considering image classi-
fication. NetPixel, with its low-latency framework, can be a
viable pathway to performing tasks such as object detection
and image classification at near-distance networking devices
and further extend to other tasks.

VII. CONCLUSION

In conclusion, we have presented NetPixel, a novel in-
network image classification system for latency-critical and
bandwidth-hungry applications in edge computing. NetPixel
infers a class based on extracted features and decision tree rules
deployed on a programmable network device. We implemented
a prototype of our system using the BMv2 software switch
and tested it on a wide range of real images. The extensive
evaluation results show that NetPixel offers competitive accu-
racy compared to a standard server-based implementation while
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can process images directly at the programmable networking
hardware.

Acknowledgments. We thank the anonymous reviewers for
their valuable feedback. This research is supported by CFI
JELF and NSERC Discovery Grants.

REFERENCES

[1] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and
challenges,” IEEE internet of things journal, vol. 3, no. 5, pp. 637–646,
2016.

[2] W. Shi and S. Dustdar, “The promise of edge computing,” Computer,
vol. 49, no. 5, pp. 78–81, 2016.

[3] M. Satyanarayanan, “The emergence of edge computing,” Computer,
vol. 50, no. 1, pp. 30–39, 2017.

[4] M. Chen and Y. Hao, “Task offloading for mobile edge computing in
software defined ultra-dense network,” IEEE Journal on Selected Areas
in Communications, vol. 36, no. 3, pp. 587–597, 2018.

[5] K. Karras, E. Pallis, G. Mastorakis, Y. Nikoloudakis, J. M. Batalla,
C. X. Mavromoustakis, and E. Markakis, “A hardware acceleration
platform for ai-based inference at the edge,” Circuits, Systems, and
Signal Processing, vol. 39, no. 2, pp. 1059–1070, Feb 2020. [Online].
Available: https://doi.org/10.1007/s00034-019-01226-7

[6] “Intel tofino 2 p4 programmability with more band-
width,” 2018, accessed, 2021-03-19. [Online]. Avail-
able: https://www.intel.com/content/www/us/en/products/network-io/
programmable-ethernet-switch/tofino-2-series.html

[7] C. Busse-Grawitz, R. Meier, A. Dietmüller, T. Bühler, and L. Van-
bever, “pforest: In-network inference with random forests,” CoRR, vol.
abs/1909.05680, 2019.
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