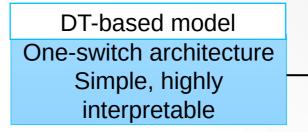
Towards Network-accelerated ML-based Distributed Computer Vision Systems

Hisham Siddique Miguel Neves Carson Kuzniar Israat Haque

Presentation Outline

- Context and Motivation
- NetPixel
- System Design
- Evaluation
- Conclusion and Future Work

Context and Motivation

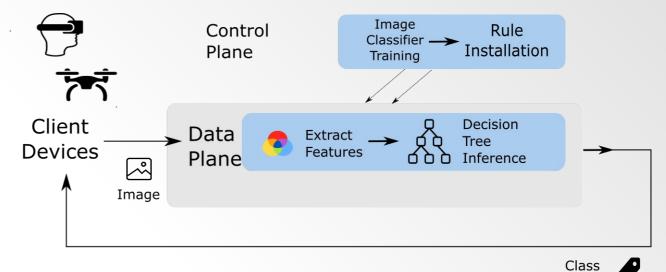

- IoT: Internet of Things
- Latency-critical applications have seen a resurgence
 - Augmented Reality/Virtual Reality
 - Intelligent transport systems
 - Drones/Surveillance
- The cloud cannot service these applications at the required latency requirements
- *Edge computing*: offers computational resources nearby

Context and Motivation

- Programmable Networking devices (PNDs)
 - Located at low hop count
 - High packet processing capabilities
- NetPixel targets these PNDs
 - Based on decision tree
 - Simple implementation
 - Competitive accuracy

P4: Programming the Data Plane

- The P4 language allows programmability of PNDs
- Protocol and target independent
- Makes use of the PISA architecture
 - Pipeline Forwarding Architecture
- Contains efficient stacks
 - Match-action Tables
 - Stateful elements

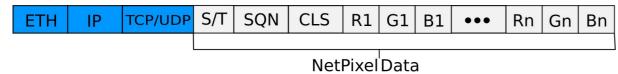

System Overview

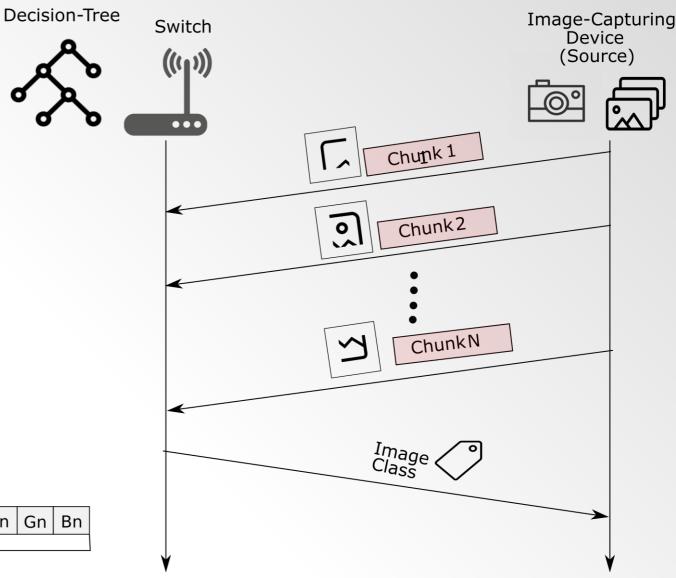
<u>Switch</u>

- Convert RGB values to grayscale
- Extract features from each chunk packet
- Store values on switch register
- Apply decision tree after all chunks received
- Send back class label

<u>Controller</u>

• Train Decision Tree

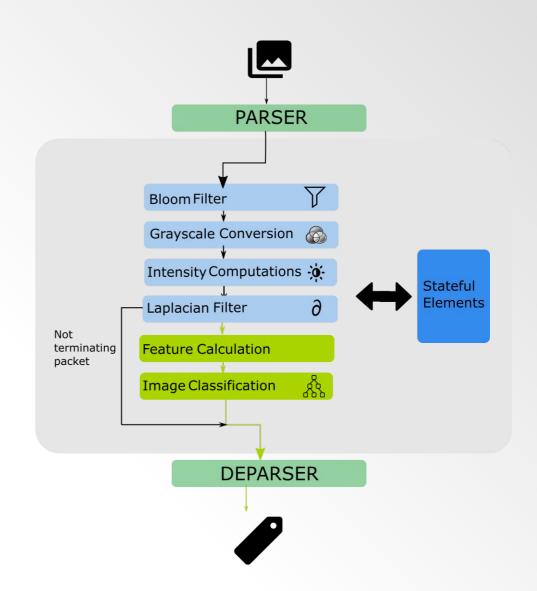



Label

NetPixel Protocol

- Images are sent over the network as subsequent chunks
- Each packet contains a chunk as the RGB pixel values
- Once all chunks are received, the decision tree is invoked _{S/T=Starting/Terminating Flag}

S/T=Starting/Terminating Flag SQN=Sequence Number CLS=Class Decision



NetPixel Pipeline

- Packets are parsed to retrieve chunk information
- Converted to grayscale values after Bloom filter
- Remaining features calculated
- If not a terminating packet, discarded
- Else, features consolidated and image labelled

Evaluation Setup

Setup

- Target model: Bmv2
- Architecture: v1Model
- Hosts emulated using python scapy library

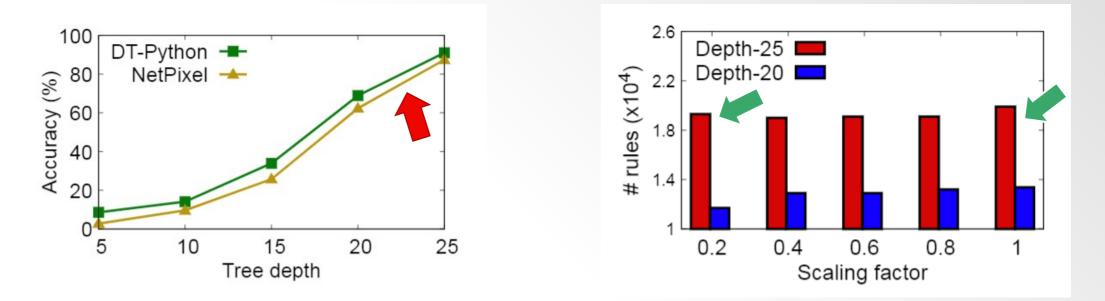
Baseline system

- Decision Tree implemented using Python
- Trained using the CART algorithm
- Not constrained by

 ^{DAI} στο hitecture
 ^π
 UNIVERSITY

Dataset	Image size	Training images	# of labels
MNIST	28x28x1	60000	10
CalTech101	Variable	9200	101
CalTech256	Variable	30000	256
ImageNet	Variable	20000	100

PINetDalhousie/netpixel (github.com)


Results

Dataset	DT-Python	NetPixel
MNIST	92.45%	85.00%
CalTech101	96.50%	92.78%
CalTech256	91.11%	87.28%
ImageNet	90.36%	86.73%

- A maximum discrepancy of 7.45% was observed
- CalTech datasets performed well due to a varied imageset
- MNIST performed worse comparatively due to images being largely similar

Evaluation and Results

- Impact of tree depth and image scales were also evaluated
 - Caltech256 dataset used
- Accuracy shows a steady increase as tree depth is increased

UNIVERSITY Scaling factor does not have a significant effect on

11

Conclusions

- Proposed a novel system that allows accurate image classification on a programmable network device for latencycritical applications.
- Uses a protocol for sending images as chunks through multiple packets to allow efficient calculation of features or feature maps
- The decision tree based system was evaluated against a baseline server implementation and demonstrated its competitive accuracy for different image datasets

Future Research

A number of extensions are possible for this work

- Deployment on hardware
 - Tofino switch
 - Can evaluate latency gains
- Extension to other image related tasks
- Classification of non-image data

Thank You

≣♪

14